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Abstract

Earthquake insurance is a critical risk management strategy that

contributes to improving recovery and thus greater resilience of in-

dividuals. Insurance companies construct premiums without taking

into account spatial correlations between insured assets. This leads

to potentially underestimating the risk, and therefore the exceedance

probability curve. We here propose a mixed-effects model to estimate

losses per ward that is able to account for heteroscedasticity and spa-

tial correlation between insured losses. Given the significant impact

of earthquakes in New Zealand due to its particular geographical and

demographic characteristics, the government has established a public

insurance company that collects information about the insured build-

ings and any claims lodged. We thus develop a two-level variance

component model that is based on earthquake losses observed in New

Zealand between 2000 and 2021. The proposed model aims at captur-

ing the variability at both the ward and territorial authority levels and

includes independent variables, such as seismic hazard indicators, the

number of usual residents, and the average dwelling value in the ward.

Our model is able to detect spatial correlation in the losses at the ward
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level thus increasing its predictive power and making it possible to as-

sess the effect of spatially correlated claims that may be considerable

on the tail of loss distribution.

Classification-JEL: C10, C21.

Keywords: Earthquake losses; Insurance; Mixed-effects model; Spatial

correlation; Variance component model.

1 Introduction

Disasters caused by natural hazards have obvious adverse consequences

for people and the economies they affect (IPCC, 2022, UNDRR, 2022).

Catastrophe insurance - for residential and commercial properties, for in-

frastructure, and for business interruption - is often seen as an integral

part of the disaster risk management toolkit. However, insurance is not

a panacea as it transfers the financial risk to the insurer (and sometimes

through re-insurance to global financial markets). Evidence does suggest,

though, that insurance and similar financial risk transfer instruments (such

as catastrophic bonds) can enable improved recovery and thus increase re-

silience ([Owen et al., 2021], [Nguyen et al., 2020]).1.

However, the literature has long been documenting that insuring catas-

trophic risks is complex and not easily achieved [Kunreuther and Michel-

Kerjan, 2014]. Indeed, coverage rates for catastrophic risks from private in-

surers are notoriously low in many areas where there is significant risk ([Nguyen

and Noy, 2020] and [Barbieri et al., 2022]), and even public insurance systems

struggle to provide widespread cover, except for instances where insurance is

mandatory [Schwarze and Croonenbroeck, 2017]. For documentation of the

extent of the catastrophic insurance cover gap globally, see [Lloyd’s, 2017].

There are both demand and supply obstacles that appear to reduce ac-

tual insurance penetration and that help explain the large global insurance

gap, even though many different types of disaster insurance products are

available or could easily be offered. Generally, private insurers are reluc-

tant to cover the risk of hazards like earthquakes or hurricanes, as this risk

is heavily correlated across their portfolio, and the risk is also often diffi-

cult to quantify. Therefore, it is often governments that end up providing

this insurance, and surprisingly rarely re-insure the extreme tail of this risk

1For a review of this literature, see [Kousky, 2019]
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internationally through the global reinsurance market [Ito and McCauley,

2022]. Examples of these public insurance schemes include flood insurance

programs in the United States and the UK (National Flood Insurance Pro-

gram and FloodRE, respectively), micro-insurance for crop losses in India,

seismic and geothermal hazard insurance in New Zealand, and earthquake

insurance in Turkey.

Earthquakes, in particular, are a very significant hazard in many coun-

tries, especially around the Pacific Ocean Rim, in mountainous Central and

South Asia, and the Central and Eastern Mediterranean. Other regions

may not experience such strong earthquakes, but very high vulnerability

makes them equally risky (e.g., some parts of the Caribbean). Mortality

from earthquakes can be very high, and indeed the highest mortality risk,

globally, is very clearly from earthquakes and the tsunamis they generate.

More than half a million people died in the four most lethal events since the

turn of the century (2004 in Indonesia, 2008 in China, 2010 in Haiti, and

2011 in Japan), by far more than in any other type of disaster. Earthquakes

also destroy very high-valued physical assets and infrastructure - the Japan

2011 earthquake-tsunami disaster was the costliest disaster event ever. Yet,

in most of these cases, the levels of insurance penetration were quite low,

and not much has changed since these events occurred.

Given these observations, it is not surprising that risk transfer tools, and

especially insurance, constitute a significant focus for policy efforts in all the

countries facing high seismic risks. Of specific relevance for us is the supply

of earthquake insurance to residential homes. This insurance is almost al-

ways supplied by governments directly (e.g., New Zealand), backed by the

government explicitly (e.g., Japan), backed by the government implicitly

(e.g., California), or provided in an ad-hoc manner (e.g., Italy).

The need to provide some kind of safety net, especially for residential

homeowners, imposes a difficult decision on public policymakers who control

these public insurance schemes. As one alternative, they could institute full

risk-based pricing of these insurance schemes, thereby aligning incentives

for re-settlement or strengthening for homeowners. They could also charge

politically unpalatable rates from different homeowners (and often more

from low-income ones). On the other extreme, such schemes could use a

flat premium fee and charge everyone exactly the same, irrespective of the

risks they face. This choice also has potentially important redistributive

3



ramifications, as low-risk homeowners will subsidize high-risk ones. Overall,

governments are recognizing that aligning incentives, and preventing moral

hazard, is potentially important. Using the insurance premium as a risk

signaling device is increasingly recognized as potentially useful, especially

since evidence suggests that other types of risk signaling (e.g., warning on

property titles, or published hazard maps online) are not as effective as one

could reasonably expect them to be (e.g., [Filippova et al., 2020]).

Recognizing that risk-based premiums are one of the most plausible ways

to generate de-risking behaviour by homeowners, our purpose here is to

propose a novel way to calculate risk-based premiums based on detailed

spatial modelling of the hazard using the existing record of insurance claims

in Aotearoa New Zealand. New Zealand is an obvious choice for such a case

study given its high frequency of earthquakes, its comprehensive insurance

penetration (>95 percent), and the presence of a single public insurer that is

willing to share its comprehensive unit-record claims data with researchers.

We estimate expected earthquake losses accounting for their spatial cor-

relation. This in turn allows the insurer to differentiate premiums based on

local characteristics. Given the limited data available on the housing stock

itself, we can calculate this risk differentiation at the ward level, i.e. elec-

toral district. Our main contribution is the model’s ability to capture and

quantify the effect of spatially correlated claims, as even low spatial corre-

lation may considerably inflate the tail of loss distribution. We were able

to detect spatial correlation between wards, which are fairly small areas.

Though spatial correlation between the wards is low, it has a bigger effect

on aggregate losses. These findings are also relevant for the assessment of

the amount of liquidity insurers need, and the amount of re-insurance they

should purchase, given their portfolio of exposures.

The rest of the paper is organised as follows. The next section describes

the innovative data we use. Section 3 describes the mixed-effects model we

estimate. Next, the empirical analysis is presented in section 4, and we end

with a discussion and conclusion section (sections 5 and 6, respectively).

2 Data

We here describe the innovative dataset analysed in this paper. Our database

represents an almost unique structured source of information on natural dis-
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asters, such as earthquakes. Indeed, it captures approximately all buildings

in New Zealand and their earthquake losses over a rather long observation

period, i.e. about 20 years.

Data on losses have been provided by the New Zealand Earthquake Com-

mission (EQC hereafter) and refer to the earthquake insurance coverage

EQCover. The database collects information about the insured buildings

and any claims lodged against the EQC between 2000 and 2021. Given

the extraordinarily high insurance penetration rate in New Zealand, the in-

sured dwellings database contains information about the 95% of the housing

stock in the country. Insured properties are localized by longitude and lat-

itude (with minor adjustment to preserve anonymity), and have thus been

assigned to their respective ward and territorial authority (TA hereafter),

which is the second tier of local government in New Zealand, through reverse

geocoding. For this, we refer to the New Zealand 2019 local boundary maps

released by Land Information New Zealand (LINZ hereafter)2. In case of

missing coordinates, records have been referenced by means of postcodes.

Overall, our database concerns 236 wards and 66 TAs in New Zealand.

As far as claims are concerned, we limited our analysis to open or ac-

cepted claims only (i.e., we remove rejected claims). To overcome issues

generated by the time gap between the moment at which the damage oc-

curred and the opening of the claims as well as the effect of earthquake

sequences, insured losses are commonly aggregated over each catastrophic

event. Moreover, to capture spatial correlations we consider the sum of the

insurer’s losses due to claims reported between 2000 and 2021 aggregated

at the ward level. Indeed, a ward is the ideal geographical area to consider

because it is sufficiently large to detect low spatial correlations but small

enough to differentiate local risk.

Table 1 summarizes all the variables used for the proposed analysis.

We use variables concerning mainly the seismic risk, the characteristics of

insured buildings, and inhabitants. Three variables in the EQC database

have been included in the analysis: total loss per ward divided by the number

of dwellings in the ward (Y ), the median Cresta zone3 of the ward (X1),

and the mean value of dwellings in the ward (X2). Additional information

has been sourced from the national statistics institute called Statistics NZ

2https://datafinder.stats.govt.nz/layer/98742-ward-2019-generalised/
3https://about.cresta.org/
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(STATS NZ hereafter). In particular, the number of individuals usually

resident in a ward (X3) and the rate of housing with reported problems

(heating, mold, etc..) (X6) and the average weekly income (X7), which are

available at the larger region level and have been disaggregated at the ward

level. In addition, the Z seismic risk score (X4)
4 used to determine building

standards has been taken for the wards from “NZ standards”5. Finally, the

rate of earthquakes (Z) in the territorial authority has also been included

in the model and it has been computed considering all the earthquakes of

magnitude bigger than 3.5 that have occurred in New Zealand from January

1900 to May 2020 and reported in the GeoNet earthquake catalogue6.

4https://www.building.govt.nz/managing-buildings/

managing-earthquake-prone-buildings/how-the-system-works/

z-values-seismic-risk/
5https://www.standards.govt.nz/shop/nzs-1170-52004/
6https://www.geonet.org.nz/data/types/eq_catalogue
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3 A mixed-effects model with spatial within-group

correlation

Here we develop a mixed-effects model able to account for heteroscedasticity

and spatial correlation between insured earthquake losses. The model for-

mulation is inspired by the work of Laird and Ware [1982]. Here the ward’s

losses per building (Y ) are represented by a two-level variance component

model with m level 2 units, i.e. the territorial authorities, and n level 1

units, i.e. the wards

log(yij) = β0 + β1X1ij + β2X2ij + β3 log(X3ij) + β4X4ij + β5X5ij+

+ β6X6ij + β7X7ij + u1j + u2jZj + εij (1)

where j = 1, . . . ,m and i = 1, . . . , nj , coefficients βk with k = 0, . . . , 7 are

the fixed effects of the model, while u1j and u2j are the random effects, and

εij is the within-group error. Since the distribution of losses per ward is

highly positively skewed, the logarithmic transformation has been chosen to

normalize the dependent variable (log-Loss hereafter). The model includes

independent variables aimed at capturing the variability at both the ward

and TA level, denoted respectively by Xk, with k = 1, . . . , 7, and Z and de-

scribed in section 2. The log-transformation has been applied to the number

of usual residents, X3, as the range of values is considerably high. Finally,

the variable Zj associated with the random effect u2j is the earthquake rate

of the TA. It is worth noticing that in the defined model, we have two lev-

els of random variation but one nested level of random effects. Hence, to

avoid misunderstandings, we refer to the model defined as a two-level model

of variance components and avoid using terminology from the literature on

multilevel modelling.

In order to introduce a source of variability associated with the TAs and

a within-TA variability, for the model in Eq. (1) we assume the following

Assumption 1

u1 ∼ N (0, σ2
u1I) , u2 ∼ N (0, σ2

u2I) , u ∼ N (0,Ψ) (2)

where u1 = (u11, . . . , u1j , . . . , u1m), u2 = (u21, . . . , u2j , . . . , u2m), u =

8



(u1,u2), I is a (m×m)-dimensional identity matrix, and

Ψ =

(
σ2
u1
I 0

0 σ2
u2
I

)
(3)

is the (2m×2m)-dimensional variance-covariance matrix of the random

effects.

Assumption 2
εij ∼ N (0, σ2

εij ) , σ2
εij = σ2

εg
2(µij ,vij , δ)

(4)
cov(εij , εi′j′) = 0 , ∀ j ̸= j′, ∀ i, i′

where σ2
ε is the error variance component constant over i and j, µij =

E [yij |u1j , u2j ], vij is a vector of variance covariates, δ is a vector of

variance parameters and g(·) is the variance function, assumed contin-

uous in δ.

Note that if g(µij ,vij , δ) = 1 for all i and j, σ2
εij = σ2

ε and the model has

homoscedastic variance.

Assumption 3
cov(u1j , εij) = 0 , cov(u2j , εij) = 0

(5)
cov(u1j , εij′) = 0 , cov(u2j , εij′) = 0

∀ i, j, and j′.

The variance of yij thus results as follows

var(yij |β0, . . . , β7, X1ij , . . . , X7ij , Zj) = var(u1j + u2j + εij)

(6)
= σ2

u1
+ σ2

u2
+ σ2

εij

The assumptions in Eq.s (2)-(5) imply a block diagonal covariance matrix
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that exhibits serial correlation between the wards in the same TA, that is

cov(yij , yi′j′) = cov(u1j + u2j + εij , u1j′ + u2j′ + εi′j′)

= cov(u1j + u2j , u1j′ + u2j′) + cov(εij , εi′j′)

=


σ2
u1

+ σ2
u2

+ σ2
εij , if i = i′, j = j′

σ2
u1

+ σ2
u2

+ σ
(j)
ii′ , if i ̸= i′, j = j′

0, otherwise

(7)

where σ
(j)
ii′ is the within-group covariance. Thus, each block Σjj in the

diagonal of the variance-covariance matrix of yij represents the variance-

covariance matrix for the j-th TA with nj wards. The generic Σjj is a

symmetric square matrix

Σjj =


σ2
u1

+ σ2
u2

+ σ2
εij σ2

u1
+ σ2

u2
+ σ

(j)
12 · · · σ2

u1 + σ2
u2 + σ

(j)
1nj

σ2
u1

+ σ2
u2

+ σ
(j)
12 σ2

u1
+ σ2

u2
+ σ2

εij · · · σ2
u1

+ σ2
u2

+ σ
(j)
2nj

...
...

. . .
...

σ2
u1

+ σ2
u2

+ σ
(j)
nj1

σ2
u1

+ σ2
u2

+ σ
(j)
nj2

· · · σ2
u1

+ σ2
u2

+ σ2
εij

 . (8)

The within-group correlation, which in our model is the correlation between

wards within a TA, is thus

ρij,i′j =

(
σ2
u1

+ σ2
u2

+ σ
(j)
ii′

)
(σ2

u1
+ σ2

u2
+ σ2

εij )
. (9)

We assume ρij,i′j equal to a function h(·) of the Euclidean distance dii′

between the centroids of two wards i and i′, where the centroid of a ward is

the average of geographical coordinates (longitude and latitude) of all the

points located in it, and a parameter r given by the distance where the

variogram first flattens out and reaches the sill [Cressie, 1993, Cressie and

Wikle, 2011]

ρij,i′j = h(dii′ , r). (10)

Since the spatial correlation between two wards is stronger the closer they

are and becomes equal to 0 after a certain distance - coherently with the

assumption of our model -, we assume that wards in the same TA are corre-

lated, while TAs are uncorrelated. The between-class correlation is, there-

fore, ρij,i′j′ = 0, but we take into account the potential effect of neighbouring
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regions on the response variable in modelling empirical heteroscedasticity

(see Sect. 4 for details).

3.1 Estimation method

Equations (1) and (7) require the estimation of eight fixed coefficients (β =

{β0, . . . , β7}),
∑m

j=1
nj(nj−1)

2 variance components (σ
(j)
ii′ ∀ j = 1, . . . ,m and

i and i′ belong to {1, . . . , ni}), two random effects variances (σ2
u1

and σ2
u2
),

and the within-group error variance (σ2
εij by varying i and j). In light of the

Eq. (10), it is not necessary to estimate the covariances σ
(j)
ii′ directly, but it is

sufficient to calculate the distances dii′ between each pair of wards i and i′.

This strongly lightens the computational burden of the model estimation.

For simplicity, we indicate with θ the variance components vector of the

entire model (including both the variance components of the random effects

and the set of parameters for the variance function g(·) in Eq. (4)).

In order to avoid underestimation of variance components, we use the re-

stricted maximum likelihood (REML hereafter) estimation method [Patter-

son and Thompson, 1971, Harville, 1977, Laird andWare, 1982] by exploiting

the variance-covariance parameterizations described in Pinheiro and Bates.

[1996]. The restricted likelihood corresponding to the model in Eqs. (1)

based on assumptions in Eqs. (2)-(5) and within-group correlation as in

Eq. (10) is defined by integrating out the fixed effects from the likelihood as

follows

LR(θ, σ
2
ε |log(y)) =

∫
L(β,θ, σ2

ε |log(y))dβ (11)

where log(y) is the vector of two-levels observations. The log-restricted

likelihood lR(θ, σ
2
ε |log(y)) = logLR(θ, σ

2
ε |log(y)) produces the conditional

estimate for σ̂2
ε(θ) from which we obtain the profiled log-restricted-likelihood

lR(θ, σ̂
2
ε(θ)|log(y)). This is optimized with respect to θ only, and using the

resulting REML estimate of θ to obtain the REML estimate of σ2
ε . Similarly,

it has been done to obtain the REML estimates of variance components θ.

The optimization method used is the quasi-Newton method due to Broyden

[1970], Fletcher [1987].
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Figure 1: Model in Eq. (1) estimated assuming within-group correlation
ρij,i′j = 0 and homoscedasticity. Left: semivariogram of within-group resid-
uals; the x-axis denotes the distance, the y-axis represents the semivari-
ogram. Center: semivariogram of the normalized residuals; the x-axis de-
notes the distance, the y-axis represents the semivariogram. Both the semi-
variograms have been presented by setting the maximum distance to 80 km.
Right: fitted (x-axis) versus standardized (y-axis) residuals.

4 Empirical analysis

The model in Eq. (1) with ρij,i′j = 0, is estimated to investigate the spatial

correlation hypothesis. The semivariogram of residuals obtained from this

base model versus the distance between the wards within a TA is reported

in Figure 1, left, and shows a clear pattern. Since various isotropic vari-

ogram models might capture the observed spatial correlation structure, sev-

eral functional hypotheses have been estimated for h(dii′ , r) (see Eq. (10)).

According to the behaviour of the semivariogram, the best fit is obtained

when assuming a Gaussian correlation structure

h(dii′ , r) = (1− nugg)e
−
(

dii′
r

)2

(12)

where a nugget effect nugg [Cressie, 1993, Pinheiro and Bates, 2000] is in-

troduced to account for abrupt changes at very small distances.

Moreover, the homoscedastic model residuals (see Fig. 1, right) show

evidence of heteroscedasticity. Possible drivers of heteroscedasticity should

be sought in the geospatial characteristics of the phenomena. We thus model

heteroscedasticity with the following function

g(sij , qij , δ) = δsijδqij (13)
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Figure 2: Model in Eq. (1) estimated assuming Gaussian within-group cor-
relation as in Eq. (12) and heteroscedasticity as in Eq. (13). Left: semivar-
iogram of within-group residuals; x-axis: distance; y-axis: semivariogram.
Center: semivariogram of the normalized residuals; x-axis: distance; y-axis:
semivariogram. Both the semivariograms have been presented by setting
the maximum distance to 80 km. Right: fitted (x-axis) versus standardized
(y-axis) residuals.

where sij is a dummy variable that takes value 1 if the ward is in the North

Island (and 0 if it is in the South Island), qij is the number of regions (among

the 16 into which New Zealand is divided) bordering the region to which

the ward belongs, and δ(·) is the subvector of variance parameters referring

to the variable (·). The introduction of sij is suggested by looking at the

wards with the highest (in absolute value) residuals, which are located on

the North Island. In addition, since the correlation between TAs is assumed

to be 0, we introduce the number of neighbouring regions qij to mitigate its

possible role in heteroscedasticity.

Preliminary analyses of the regressors do not show problems related

to multicollinearity. Results of the selected model, which is the model in

Eq. (1) with both spatially correlated losses and heteroscedastic residuals

(see Eq.s (12) and (13), respectively), are reported in Table 2. As one can no-

tice, only two fixed effects appear not significant and the model has therefore

been modified accordingly obtaining a final model with the both Akaike and

Bayesian information criteria (AIC and BIC, respectively, hereafter) smaller.

In particular, the intercept, the Cresta zone, the Z seismic risk score, the

logarithm of the number of usual residents, the average weekly income, and

the dwelling value appear good predictors of the log(Y ). Not surprisingly,

the average value of dwellings in the ward and the Z seismic risk score appear

the main determinants of the value of losses. In contrast, the average weekly

13



Table 2: Estimation results. Model in Eq. (1) with within-group corre-
lation as in Eq. (12) and heteroscedasticity as in Eq. (13). Column (A): all
regressors as in Table 1; column (B): significant regressors only.

Dependent variable:

log-Loss

(A) (B)

Constant −25.698∗∗∗ −27.835∗∗∗

(5.299) (5.287)

Cresta zone 0.383∗∗∗ 0.391∗∗∗

(0.044) (0.044)

Z seismic risk score 5.603∗∗∗ 5.432∗∗∗

(1.712) (1.667)

Density 0.0003
(0.0002)

Housing with problems −5.189
(4.367)

log(Usual residents) 0.245∗∗∗ 0.280∗∗∗

(0.086) (0.083)

Average weekly income −0.011∗∗ −0.010∗∗

(0.005) (0.005)

Dwelling value 2.299∗∗∗ 2.312∗∗∗

(0.394) (0.401)

Random Effects
σ̂u1 1.475 1.479
σ̂u2 0.0047 0.095
σ̂ε 0.588 0.544

Within-group correlation
r̂ 20.538 1.984
n̂ugg 0.656 0.071

Heteroscedasticity (δsij=0 = 1, δqij=4 = 1)

δ̂sij=1 1.191 1.148

δ̂qij=1 1.194 1.284

δ̂qij=2 1.007 1.058

δ̂qij=3 1.368 1.498

δ̂qij=5 1.813 2.001

Log-restricted-likelihood -355.319 -352.830
AIC 746.638 737.660
BIC 808.366 792.669

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0114



Table 3: Accuracy measures. Comparison between the model in Eq. (1)
with ρij,i′j = 0 and homoscedasticity (columns 2 and 4) and the model in
Eq. (1) with Gaussian spatial correlation as in Eq. (12) and heteroscedastic-
ity as in Eq. (13) (columns 3 and 5). Columns 2 and 3 refer to the estimated
losses at the ward level; the last two columns refer to the estimated losses
at the TA level.

log-Loss per ward log-Loss per TA
ρij,i′j = 0 ρij,i′j in Eq. (12) ρij,i′j = 0 ρij,i′j in Eq. (12)

RMSE 0.702 0.700 0.340 0.323
MAE 0.523 0.516 0.249 0.227

MAPE 43.496 44.599 7.716 7.462

income plays a much minor role. Using the standard UNDRR terminology7,

it is apparent that both measures of the hazard (Cresta zone and the Z

seismic risk score), and measures of exposure matter for the determination

of ward-level losses. V ulnerability, in as much as it is proxied by per capita

income, however, does not seem to matter that much. This may be because

the vulnerability of residential buildings to earthquake damage might not be

that different across different wards with different income levels in the New

Zealand context. In addition, figure 2 reports the semivariograms and the

plot of residuals of the estimated model that clearly show the effectiveness

in modelling spatial correlation and heteroscedasticity.

As for the model accuracy, we computed the root mean squared error

(RMSE hereafter), the mean absolute error (MAE hereafter), and the mean

absolute percentage error (MAPE hereafter) that compare the accuracy of

the loss estimated using the proposed heteroscedastic spatially correlated

model with those obtained with the basic homoscedastic uncorrelated model

(see Table 3). As one can notice, the two models perform very similarly

in terms of losses per ward and different accuracy measures support one

model or the other. By contrast, all the accuracy measures suggest that

the heteroscedastic spatially correlated model outperforms the basic one in

estimating the losses at the TA level. However, one of the most relevant

implications of our model is the impact of spatially correlated claims on the

tail of loss distribution that we discuss in the next section.

7https://www.undrr.org/terminology.
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5 Discussion

As noted above, we find that insured damage from earthquakes is, not sur-

prisingly, spatially correlated across wards within a TA. In line with the

existing literature [Kousky and Cooke, 2012, Cooke et al., 2010], we found

that the correlation between wards in the insurance portfolio is on average

extremely low. As reported in Table 4, the average correlation between

wards in a TA is 0.0069.

Table 4: Estimated spatial correlation between wards. Estimates
refer to the models presented in Table 2, column (B).

Spatial Correlation

Mean Mean 3rd Qu. Max.
(all wards) (wards in a TA) (wards in a TA)

0.0001 0.0069 2.088788e-09 0.5504

However, the low spatial correlation across wards is not immaterial to

the identification of the tail of the distribution. As shown in Figure 3 and

Table 5, the loss prediction obtained including spatial correlation quite sat-

isfactorily approaches the observed log-losses both at the ward and at the

TA level. In particular, our model is able to capture the right tail of the

cumulative ward losses. This is a very satisfactory result since losses are

strongly affected by the 2011 Canterbury earthquake sequence, which has

been an extreme event.

Capturing the effect of spatial correlation improves the fitting of the ex-

ceedance probability curve EP = P (AnnualLoss > x), which is used by

insurers to determine the insolvency probability. Figure 4 shows the ex-

ceedance probabilities predicted by the homoscedastic non-spatially corre-

lated model and by the heteroscedastic spatially correlated one. As one can

easily notice, the uncorrelated model underestimates the aggregate expected

losses, while the proposed spatial-correlation model better approaches the

observed values. Spatial correlation particularly affects the prediction of

losses with time to return greater than 20 years. These spatially corre-

lated losses we identified in the right tail of the distribution are extremely

important for determining the liquidity and solvency risks of an insurer, par-

ticularly when a large event occurs. They are also important in determining

the amount of re-insurance that insurers should purchase, and have impli-
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Figure 3: Comparison of empirical cumulative distribution functions of pre-
dicted (blue line) and observed (black line) log(yij). Plots refer to predic-
tions from the model in Eq. (1) with Gaussian within-group correlation as in
Eq. (12) and heteroscedasticity as in Eq. (13). The x-axis denotes the values
of log(yij), the y-axis denotes the cumulative probability. Left: log-Loss at
ward level. Right: log-Loss at TA level.

Table 5: Loss right-tail quantiles. Predicted values have been estimated
by the model in Eq. (1) with Gaussian within-group correlation as in Eq. (12)
and heteroscedasticity as in Eq. (13). Quantiles of the distribution of ward
log-losses (columns 2 and 3) and quantiles of the distribution of TA log-losses
(columns 4 and 5).

log-Loss per ward log-Loss per TA

Observed Predicted Observed Predicted

90% 16.96 16.92 16.99 16.65
91% 17.94 17.91 17.14 16.96
92% 18.66 18.55 17.18 17.10
93% 18.80 18.79 17.39 17.33
94% 19.10 19.44 17.62 17.55
95% 19.29 19.54 17.63 17.55
96% 19.43 19.65 18.49 18.40
97% 20.00 19.84 19.79 19.67
98% 20.32 20.04 19.83 19.67
99% 20.65 20.13 20.88 20.71

100% 20.72 20.31 22.81 22.62

cations for any prudential regulatory practice of the insurance industry8.

8In New Zealand, macro-prudential regulation of the insurance sector is the responsi-
bility of the central bank (the Reserve Bank of New Zealand).
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Figure 4: Observed exceedance probability curves (black lines) versus ex-
ceedance probability curves predicted using the model in Eq. (1) with
ρij,i′j = 0 and homoscedasticity (red lines), and exceedance probability
curve predicted using the model in Eq. (1) with within-group correlation
as in Eq. (12) and heteroscedasticity as in Eq. (13) (blue lines). The x-axis
denotes the time to return RT = 1

EP and the y-axis denotes the total annual
millions of losses in the Country. Left: RT up to 30 years; right: RT up
to 200 years. Please note that the y-axis range varies among the plots to
better show the curves.

By ignoring this very small spatial correlation, insurers and their regulator

might be underestimating the risk of insolvency. This may have further

repercussions for government budgets (who are often the implicit insurer-

of-last-resort) and for long-term recovery trajectories of disaster-affected re-

gions, in as much as recovery is dependent on the available funding from

insurance claims.

6 Conclusion

The purpose of our modelling was to examine the feasibility of quantifying

the likely insurance liability (or the level of risk-based insurance premiums)

that can be estimated from existing claims data. We find that accounting

for the spatial correlation in earthquake damages increases the predictive

power of our mixed-effects model. Without accounting for these spatial

correlations and heteroscedasticity, estimates based on historical data will

under-estimate the risk, and therefore the exceedance probability curve.

The model we developed is thus able to fit the data much better than the
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equivalent and more standard homoscedastic non-spatial model. It is clear

that, should the public insurer in New Zealand decide to start charging risk-

based premiums, they should use a model that accounts for these features

of the data. This type of model will also be useful to assess liability and

risk more broadly, and thus price any reinsurance contracts that the insurer

purchases.

More generally, the modelling approach we propose can be used in other

instances in which an insurer is considering moving to risk-based pricing, or

in other situations where risk-based pricing is more appropriate for supplying

catastrophic natural hazard insurance cover.
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