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Abstract

Investigating thermal energy demand is crucial for the development of sustainable cities
and efficient use of renewable sources. Despite the advances made in this field, the analysis
of energy data provided by smart grids is currently a demanding challenge due to their com-
plex multivariate structure and high-dimensionality. In this paper, we develop a clustering
methodology based on a novel copula-based dissimilarity measure suitable for analyzing a
high temporal resolution panel data for district heating demand. Inspired by the character-
istics of this data, we explore the usefulness of the Ali-Mikhail-Haq copula in defining a
new dissimilarity measure to cluster variables in a hierarchical framework. We show that
our proposal is particularly sensitive to small dissimilarities based on tiny differences in the
dependence level. Therefore, the measure we introduce is able to better distinguish between
objects with low dissimilarity than classic rank-based dissimilarity measures. Moreover,
our proposal considers a weighted version of the copula-based dissimilarity that embeds the
spatial location of the involved data objects. We investigate the proposed measure through
Monte Carlo studies and compare it with the corresponding Kendall’s correlation-based dis-
similarity measure. Finally, the application to real data concerning the Italian city Bozen-
Bolzano makes it possible to find clusters of buildings homogeneous with respect to their
main characteristics, such as energy efficiency and heating surface, to support the design,
expansion and management of district heating systems.

Keywords: Ali-Mikhail-Haq copula, Cluster analysis, Dissimilarity measure, District
heating demand, Panel data, Spatial weight.

Jel Codes: C10, C33, C38

*Faculty of Economics and Management, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy. Email:
marta.dilascio@unibz.it

†Faculty of Science and Technology, Free University of Bozen-Bolzano, Bozen-Bolzano, Italy. Email: an-
drea.menapace@unibz.it

‡Department of Economics, Business, Mathematics and Statistics “B. de Finetti”, University of Trieste, Italy.
Email: rpappada@units.it

1



1 Introduction
Understanding thermal consumption in urban areas is a crucial need to increase the sustain-
ability and efficiency of energy systems and reduce world climate change [Lund et al., 2014].
Renewable energy systems require a fully reshape of the traditional infrastructure and a rethink
of the technologies involved [Lund et al., 2018]. District heating (DH hereafter) is one of the
key technologies involved in the ongoing process aimed at developing sustainable cities and im-
proving the efficiency of the heating sector. Indeed, DH is defined as an energy distribution
system that provides heat through a network of pipes to buildings in a neighborhood or a town
by incorporating renewable sources and reducing waste of energy in a flexible urban energy
system [Frederiksen and Werner, 2013].

Developing stochastic methods to analyze high frequency DH energy data provided by smart
grids is currently a demanding challenge (see, e.g. Sharma and Saini [2015], Ma et al. [2017]).
In particular, there is a need for an in-depth analysis of heating data to enhance the manage-
ment and planning of the heating system and the efficient use of renewable energy sources (see,
e.g. Menapace et al. [2021]). In this context, clustering methods enable the investigation of the
structure underlying the data generating process (DGP hereafter), serving as the basis for further
learning, such as forecasting and anomaly detection. Specifically, the identification of DH users
that are similar according to relevant characteristics contributes to efficiently plan the DH and
manage heat production and distribution.

In the hierarchical agglomerative clustering framework [Everitt et al., 2011], the core idea is
to construct the hierarchical relationship among the objects to be grouped starting from a set of
clusters each containing a single object to a single cluster containing all the objects [Kaufman and
Rousseeuw, 1990]. Hierarchical clustering requires a pairwise dissimilarity measure to compare
singletons and a linkage rule to compare clusters. The most widely used linkage rules are the
average, the complete, and the single. The literature on hierarchical clustering methods is exten-
sive and applications have been successfully performed in various contexts (see, e.g., Bengtsson
and Cavanaugh [2008], Nguyen [2016], Alvarez-Esteban et al. [2016], Di Lascio et al. [2018]).
In clustering random variables (r.v.s hereafter), copula-based measures of association have been
used in a variety of application contexts (see, e.g., Nazemi and Elshorbagy [2012], Di Lascio
et al. [2017], Pappadà et al. [2018] and De Luca and Zuccolotto [2021]), as they allow describing
complex dependence structures and addressing specific features of the joint distribution of r.v.s,
such as asymmetries and tail dependence [Durante and Sempi, 2015]. Indeed, copula models
allow us to describe the dependence structure of the DGP separately from the marginal distribu-
tions, yielding a much greater degree of flexibility in specifying and estimating the dependence
relationship. For instance, the copula approach makes it possible to define pairwise dissimilari-
ties as well as multivariate dissimilarities in terms of concordance or tail dependence measures
(see, e.g., Kojadinovic [2010], Durante et al. [2015], De Luca and Zuccolotto [2017], Bonanomi
et al. [2019], Fuchs et al. [2021]).

While many contributions in the context of clustering r.v.s have focused on detecting a strong
association between extreme values (see, e.g., Durante et al. [2014] and Côté and Genest [2015]),
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this paper focuses on the ability to differentiate r.v.s characterized by a low level of dependence
and small dissimilarities according to the features of the DH demand data analysed in this work.
As discussed by Kruskal [1977], cluster analysis is appropriate to extract information from small
dissimilarities. Here, we analyze hourly panel data concerning the thermal energy demand of res-
idential users in the Italian city of Bozen-Bolzano in 2016. To this aim we explore the potential of
the Ali-Mikhail-Haq (AMH hereafter) copula [Ali et al., 1978] to cluster r.v.s in the agglomera-
tive hierarchical clustering context, proposing a new AMH copula-based dissimilarity measure to
investigate the theoretical and applied properties. Since the most used copula-based dissimilarity
measures involve Kendall’s τ correlation coefficient, we empirically compare the performance
of the proposed measure with the corresponding version based on Kendall’s τ through Monte
Carlo studies.

As mentioned above, the theoretical contribution of this paper is applied to panel data. In
the context of time series data analysis, hierarchical clustering algorithms exploiting copula-
based dissimilarity measures have been used to detect the co-movements of r.v.s (see, e.g., De
Luca and Zuccolotto [2011], Disegna et al. [2017], Reddy and Ganguli [2013]). Extensions of
these approaches, considering both temporal and cross-sectional dependence via copulas, can be
found in, e.g., Yi and Liao [2010], Rémillard et al. [2012], but to the best of our knowledge, there
are no methodological procedures dedicated to panel data analysis, which is our focus. Hence,
the proposed AMH copula-based dissimilarity measure is exploited in the development of a
procedure for clustering panel data. While some studies use copulas in the field of DH demand
(see, e.g., Di Lascio et al. [2020], Di Lascio et al. [2021]), copula-based clustering has not yet
been developed – or only marginally – in relation to energy or the more general environmental
sciences field (see, e.g., Luo et al. [2019], Just and Łuczak [2020]).

The remainder of the paper is organized as follows. We define a new dissimilarity measure
and present its theoretical properties in Section 2. In Section 3, we compare our proposal with a
classic dissimilarity measure through a Monte Carlo simulation study and discuss the advantages
and limitations of the new dissimilarity measure. We then illustrate a clustering methodology
based on the proposed dissimilarity via the application to panel data in Section 4. Section 5
highlights the most relevant implications and summarizes our main findings, relating the more
technical mathematical results to the Appendix A.

2 AMH copula-based dissimilarity measure
Copulas originated in the context of probabilistic metric spaces via Sklar’s theorem Sklar [1959]
stating that a copula C(·) is a joint distribution function with uniform margins. The advantages
of the copula-based approach in contexts where dependence is relevant are well known, since
copulas potentially enable describing any kind of complex multivariate dependence structure of
the DGP, such as non-linear and non-Gaussian relations, heavy tails, and asymmetries [Durante
and Sempi, 2015]. In the literature, a myriad of copula models have been proposed, each able to
describe a particular dependence pattern. Here we focus on the Ali-Mikhail-Haq copula function
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that has been introduced by [Ali et al., 1978] and whose statistical properties have been studied
by Kumar [2010]:

CAMH(u1, u2) =
u1u2

1− θAMH
u1u2

(1− u1)(1− u2)
(1)

where θAMH
u1,u2

∈ [−1, 1[ is its dependence parameter whose domain in terms of Kendall’s τ co-
efficient is [−0.1817, 0.3333[. Thus, the AMH copula function can be used to describe both
positive and negative correlation of r.v.s, even though it is not suitable for very high positive or
negative correlations. The dependence parameter of the AMH copula can be estimated using the
estimation methods available in the literature (see, e.g., Cherubini et al. [2004]).

In the hierarchical clustering context copula has been largely used to define dissimilarities in
terms of measures of association (see, e.g., [Fuchs et al., 2021] and references therein). Here, the
decision on which clusters should be merged is based on the dissimilarity between two objects
and a linkage rule specifying the dissimilarity between two clusters of objects. Such linkage is
usually a function of the pairwise dissimilarities of objects in the clusters. In the light of the
empirical data features, our purpose is twofold: on the one side, we need to take into account the
spatial location of objects to compare and, on the other side, define a dissimilarity measure able
to differentiate objects with low and very similar dependence. Hence, we propose the following
measure based on the AMH copula that takes into account the spatial information of objects:

dAMH
jj′ = cjj′

√
2(1− θAMH

jj′ ) (2)

where cjj′ = exp(gjj′/max(G))− δjj′ , with δjj′ = 0 ∀j ̸= j′, and 1 otherwise, and G = (gjj′) is
the spatial weights matrix that can be calculated starting from the geographic distance (based on
longitude and latitude information) of all the pairs (j, j′) with j, j′ = 1, . . . , p. Such a weighting
scheme emphasizes the dissimilarity of objects that are further apart. Moreover, the measure in
Eq. (2) is a dissimilarity measure, since it satisfies the two properties of a dissimilarity measure
whose proof is trivial:

P1. dAMH
jj′ ≥ 0 ∀ j, j′, and dAMH

jj′ = 0 if and only if j = j′

P2. dAMH
jj′ = dAMH

j′j ∀ j, j′.

The proposed dissimilarity measure takes values in [0, 2 exp(1)] and it considers minimum dis-
similarity only between variables with maximum comonotone (positive) dependence. In addi-
tion, dAMH is decreasingly monotone with respect to θAMH, and this property means that the
dissimilarity degree tends to vanish as soon as approaching the comonotonic (positive) case.

It is worth stressing that: (i) when cjj′ = 1, the proposed dissimilarity only depends on the as-
sociation of the considered pair (j, j′) and Eq. (2) maps dissimilarity values from [1.1547, 1.5373]
to [0, 2] in light of the relationship between θAMH and Kendall’s τ (see Eq. (A.1) in the Ap-
pendix A); (ii) Eq. (2) is not intended to measure spatial dependence and, thus, it is not re-
lated to dissimilarities based on spatial association or heterogeneity (see, e.g., Anselin and Rey
[2010], Anselin [1995]), but it only takes into account the spatial location of the r.v.s to cluster;
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(iii) the use of spatial information cjj′ has an important effect on the dissimilarity between two
objects and differentiates the AMH copula-based dissimilarity measure from the corresponding
dissimilarity based on Kendall’s τ correlation coefficient dτ = cjj′

√
2(1− τjj′) as explained in

detail below.
To stress the effect of the spatial weight and the different behaviour of dAMH and dτ , we as-

sume that the AMH copula model is the true model and express dτ as df(θ
AMH) = cjj′

√
2(1− f (θAMH)),

where f
(
θAMH

)
is given in Eq. (A.1), Appendix A. We then mathematically analyse the two

measures, and show the different behaviour of the two. In particular, we compute the difference
between the two measures, and between the partial derivatives of order 1 and 2 of the two mea-
sures with respect to θAMH. The resulting mathematical expressions are in Eq.s (A.2–A.4) in Ap-
pendix A, while the shape of the three equations by varying θAMH ∈ [−1, 1[ and cjj′ ∈ [1, exp(1)]
is shown in Fig. 1. The difference between the two dissimilarities (Fig. 1, left) shows a monoton-
ically decreasing (increasing) behaviour for negative (positive) values of dependence by varying
cjj′ . The slope as well as the curvature of the plane changes with the dependence and the spatial
weight. Both partial derivatives differences are monotonically increasing in θAMH and cjj′ . Es-
pecially in the difference of slopes (Fig. 1, middle), the impact of the spatial weight is different
for the two dissimilarity measures; indeed, as the spatial weight increases, the difference in the
slope of the two dissimilarity measures increases too. The differential increments of the two dis-
similarity measures is greater than zero for all cjj′ ∈ [1, exp(1)]. Hence the difference between
the two considered measures is monotonically increasing and convex in cjj′ .

Figure 1: Comparison between dAMH and df(θ
AMH): difference between df(θ

AMH) and dAMH in
Eq. (A.2) (left), and between first partial derivative in Eq. (A.3) (middle), and second partial
derivatives in Eq. (A.4) (right) of dAMH and df(θ

AMH) (z-axis) versus θAMH ∈ [−1, 1[ (y-axis), and
cjj′ ∈ [1, exp(1)] (x-axis).

Finally, since the parametric space of the dependence parameter θAMH tends to amplify the
difference between low-rank correlations, allowing us to distinguish objects with tiny differences
in dissimilarity values, the proposed measure is particularly useful when variables exhibit low
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dependence and the dissimilarity values show homogeneity. As will be clear in the empirical
application in Section 4, this also results in a dendrogram that is less flattened and dense, i.e., with
a wide distance between clusters so that a later fusion takes place at a higher level of dissimilarity
than the previous one. Hence, the hierarchy of clusters is better highlighted, improving the
interpretation and cutting of the dendrogram.

3 Monte Carlo study
Here, we provide a simulation study to assess the goodness of the proposed dissimilarity measure
in Eq. (2) with respect to the weighted Kendall-based dissimilarity measure dτ . In particular, we
want to investigate the ability of dAMH to discriminate objects with small and close correlation
values, also taking into account the spatial information. To this end, we consider five different
scenarios of a three-dimensional DGP based on copulas differing from the AMH (see Table 1)
and we generate K = 3 independent samples, each representing a cluster generated from a
specific copula model. Inspired by the case study analysed in Sect. 4 we set all the dependence
parameters to small values and we generate n = 150 realizations of p = 41 r.v.s (which can
be interpreted, for instance, as serially uncorrelated time series). The cluster size pk (with k =
1, . . . , K) is randomly chosen from 2 to (41− (K + 1)) to ensure that each cluster has at least 2
elements and the size of the whole clustering is p. The five considered scenarios are simulated by
using different settings for spatial information. In particular, the weights are computed by using
the exponential form described in Section 2, where gjj′ is the distance between the two points j
and j′ computed according to the generated coordinates. We consider two different settings for
the geographic position of points. In one case, we generate points in the plane in such a way that
one cluster of points is clearly distant from the other two that conversely show some overlap:
we use the following cluster centers (100, 100), (500, 300), and (600, 200) to generate points by
adding a random noise distributed as N (0, 100) and each cluster size is chosen randomly as
described above. Here, gjj′ is the Euclidean distance between the simulated plane coordinates.
In the other case, we compute the weights starting from the geographic positions on the WGS
ellipsoid of the points observed in the panel data application described in the section 4 adding a
uniform random noise. We therefore simulate 10 different scenarios, and for each, perform 500
Monte Carlo replications.

Table 1: Simulated scenarios used in the Monte Carlo study.
Scenario Cluster 1 Cluster 2 Cluster 3

1 Clayton, τ = 0.05 Clayton, τ = 0.15 Clayton, τ = 0.25
2 Gumbel, τ = 0.25 Frank, τ = 0.1 Clayton, τ = 0.2
3 Gumbel, τ = 0.2 Frank, τ = 0.2 Clayton, τ = 0.2
4 Clayton, τ = 0.2 Clayton, τ = 0.2 Clayton, τ = 0.2
5 Gumbel, τ = 0.2 Gumbel, τ = 0.2 Gumbel, τ = 0.2
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To measure the performance of dAMH and dτ , we compute (i) the Adjusted Rand Index [Hu-
bert and Arabie, 1985] (ARI hereafter) to assess the agreement between the partitions obtained
using the two compared measures given the true number of clusters and (ii) the agglomera-
tive coefficient [Kaufman and Rousseeuw, 1990] (AC hereafter) as the average width of the
banner [Rousseeuw, 1986] describing the strength of the clustering structure to assess the overall
quality of the dendrogram. The distribution of ARI for each simulated scenario is shown in Fig. 2.
Here, the partition is obtained by cutting the dendrogram so that three clusters are identified. It is
evident that the proposed spatially-weighted AMH copula-based dissimilarity measure provides
partitions very different from those obtained using the spatially-weighted Kendall-based dissim-
ilarity, irrespective of the scenario, the linkage rule, and the spatial weights. It is interesting to
note that the role of the spatial weights is crucial and negatively affects the agreement between
the two measures when the weights are empirically computed, and therefore not related to the
simulated within-cluster dependence. The resulting ARI values support the already theoretically
discussed differences between dAMH and dτ justifying the use of the AMH copula dependence
parameter as an alternative to the Kendall’s coefficient. The AC distribution for each simulated
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Figure 2: Boxplots of ARI (y-axis) comparing the partitions obtained through dAMH and dτ with
K = 3 by varying i) the linkage method between the average, the complete (maximum), and the
single (minimum) (x-axis), ii) the scenario among the five given in Table 1 (panels by columns),
and iii) the spatial settings among random weights and empirical weights plus a random noise
(panels by rows) - see text for details. Sample size is n = 150× p = 41. The number of Monte
Carlo replications is 500.

scenario is shown in Fig. 3. According to Kaufman and Rousseeuw [1990] an AC close to 1 in-
dicates that tight clusters that are far away from each others, i.e. a very clear clustering structure,
have been identified. Instead, when the AC is close to zero, “the data set does not contain very
natural clusters which would have been formed sooner [. . . ] as all dissimilarities between objects
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Figure 3: Boxplots of AC (y-axis) by varying i) the pairwise dissimilarity measure between dAMH

and dτ , ii) the linkage method between the average, the complete (maximum), and the single
(minimum) (x-axis starting with the average linkage and dAMH, continuing with the complete
linkage and dAMH, and ending with the single linkage and dτ ), iii) the scenario among the five
provided in Table 1 (panels by columns), and iv) the spatial settings among random weights,
and empirical weights plus a random noise (panels by rows) - see text for details. Sample size is
n = 150× p = 41. The number of Monte Carlo replications is 500.

are of the same order of magnitude” [Kaufman and Rousseeuw, 1990]. Here, it is evident that
the proposed dissimilarity measure outperforms the measure based on Kendall’s τ irrespective of
the scenario, the linkage rule, and the setting of spatial weights. The complete linkage appears
to be better than the average and the single linkages, and the use of spatial information appears
to have a positive but mild effect on the performance of the proposed measure.

4 Application to panel data

4.1 District heating system and thermal energy demand
In this section, we describe the data concerning the thermal consumption of the residential users
connected to the DH of the Italian city Bozen-Bolzano. The heating demand of Bozen-Bolzano
is partially supplied by a DH system that is in constant expansion to sustain the municipality’s
climate actions [Menapace et al., 2020]. The Bozen-Bolzano DH concerns a network of about
20 Km pipes, a centralized production center mainly based on a waste-to-energy plant, 220
MW h thermal storage, and more than 200 heat exchanger substitutions [Menapace et al., 2019].
Each substation is endowed with a smart heat meter that provides high frequency and accurate
resolution data used by operators to monitor the system.
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Here we use time series of the thermal energy demand (TED hereafter, in kW h) of 41 resi-
dential users (i.e., one or more buildings with homogeneous characteristics fed by one or more
DH substations) connected to the Bozen-Bolzano DH during the winter week from 08/01/2016
to 14/01/2016 (see Fig. 4). We also use the time series of meteorological data, such as outdoor
temperature (TEMP hereafter, in ◦C) and solar radiation (RAD hereafter, in W/m2) provided
by the S. Maurizio weather station. The meteorological data, indeed, present significant depen-
dence on heating demand and can help the proper modelling of the TED panel data Soutullo
et al. [2016]. The observed time series have been pre-processed to remove outliers due to meter
or transmission system failures, and then aggregated to obtain hourly observations.

Figure 4: Map of the sample of users in the different districts fed by the Bozen-Bolzano DH.

The final aim of this application is to identify and characterize clusters of homogeneous build-
ings with respect to the behavior of TED. Therefore, the aim of the cluster analysis is to provide
useful information to improve the efficiency and sustainability of the DH of Bozen-Bolzano
through a proper schedule of the heat production and management of the network and the ther-
mal reservoir. For instance, consider two users with clearly different behaviors: Fig. 5 (top)
represents the typical heating profile of a new or renovated building with continuous operation
control that maintains the indoor temperature constant throughout the entire day with morning
and evening peaks; Fig. 5 (bottom) corresponds to a typical non-renovated building with a night
setback control that leads to null demand during the night and a sharp peak in the early morning.
To verify and assess the quality of the clustering results, the following additional information is
used: heating surface (in dam2), energy class (in kW h/m2/year), age category (ranges from
class 1, the oldest for buildings before 1918, to class 9, the newest for buildings after 2005), and
mean yearly heat consumption (in MW h/year).
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Figure 5: Time series of TED in kW h (y-axis) of two typical users.

4.2 Clustering methodology
In this section we develop the panel data clustering procedure with the aim of finding clusters
of DH residential users. The clustering methodology is based on the dependence between TED
time series of each user. To consider both temporal and cross-sectional dependence, we extend
the copula-based approach that has been already used for time series modeling (see, e.g., Patton
[2012]) to the panel data case. To do that we first tackle serial dependence through a suitable
panel regression model (see, e.g., Baltagi [1995], Wooldridge [2002]) and, next, model cross-
sectional dependence between the residuals time series by applying the proposed measure in
Eq. (2) in the hierarchical clustering framework. Hence, we estimate a dynamic panel regression
model to the whole data set of p = 41 variables and n = 150 observations that takes into
account the effect of (lagged and not) meteorological variables on TED, as well as the serial
dependence of TED and individual effects µi, with i = 1, . . . , 41. The following specified
model derives from the preliminary analysis of the TED, TEMP, and RAD time series (together
with their autocorrelation and partial autocorrelation functions) and a forward selection based on
significant covariates:

TEDit = ρ1TEDi(t−1) + ρ2TEDi(t−24) + β1RADit + β2RADi(t−1) + β3TEMPit +

+β4TEMPi(t−3) + uit

= ρ1TEDi(t−1) + ρ2TEDi(t−24) + β1RADit + β2RADi(t−1) +

+β3TEMPit + β4TEMPi(t−3) + µi + εit (3)

where i = 1, . . . , 41, t = 1, . . . , 150, ρ1, ρ2, β1, β2, β3, and β4 are scalar, uit is assumed to follow
a one-way error component regression model with µi ∼ N(0, σ2

µ) and εit ∼ N(0, σ2
ε), which are

independent of each other and among themselves. Since TEDit is a function of µi, it follows that
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TEDi(t−1) is also a function of µi. Therefore, TEDi(t−1) is correlated with the error term, and
we use a set of instrumental variables, i.e., TED lagged from (t − 3) to (t − 24), to account for
it and compute the estimation through the Arellano and Bond one-step generalized method of
moments Arellano and Bond [1991].

Once the model in Eq. (3) has been estimated, the residuals of the 41 time series are extracted,
and the weighted AMH copula-based dissimilarity is computed as in Eq. (2) where the 41 × 41
matrix of spatial weights is constructed by adopting the exponential form and the distance on the
WGS ellipsoid as illustrated in Section 3. We note that the residuals show low and very similar
linear Kendall’s correlation ranging in (−0.207, 0.394). Only two values lie outside the Kendall’s
τ range for the AMH copula that have been replaced with the (maximum or minimum) extreme
of the range. Thus, a typical dissimilarity measure based on Kendall’s τ correlation coefficient
may be not able to discriminate among them, unlike dAMH, which appears to be more sensitive to
small correlations. Moreover, the spatial weights provide useful information about the buildings,
since each district in the city is characterized by its own urban planning history. The dendro-
grams obtained by varying the linkage rule between average, complete, and single are shown in
Fig. 6. The average and complete linkages seem to produce more balanced clusters, while the
single rule exhibits the well-known chaining effect. To decide which linkage to use, we adopt the
previously discussed AC where values for the average, complete, and single linkages are 0.66,
0.79, 0.41, respectively. The complete linkage is then selected, yielding the highest agglomera-
tive coefficient that may suggest a better overall clustering structure. For completeness, we also
compute the AC value for the hierarchical clustering using the weighted Kendall-based dissim-
ilarity measure dτ and the three linkages: AC is lower than that computed using the proposed
measure dAMH regardless of the linkage, with the highest value of 0.64 for the complete linkage.
In addition, the ARI between the partitions obtained using the complete linkage and dAMH or dτ

is equal to 0.30 confirming that the use of AMH copula leads to find a partition highly different
from the one obtained using the weighted version of the Kendall’s based dissimilarity measure.

As for the selection of the number of clusters to cut the dendrogram and derive the final
partition, we adopt an index useful to find a compromise between within-cluster homogeneity
and between-cluster separation. Specifically, we use a version of the Dunn index computed as
the ratio of the minimum average dissimilarity between two clusters to the maximum average
within cluster dissimilarity, which is implemented in the R package fpc Hennig [2020] (many
other choices could have been made, see, for instance, Halkidi et al. [2001]). A large value of
the computed index can be interpreted as an indication of the presence of compact and well-
separated clusters. Fig. 7 (left) shows the values of the considered index for K varying between
2 and 8. Both K = 2 and K = 4 can be justified, however we select K = 4 since the partition
into two clusters can be poorly informative. To confirm the selection we also took into account
the ratio between the average distance within clusters to the average distance between clusters,
leading to similar conclusions. The final partition is shown on the map in Fig. 7 (right), which
underlies the important role of the spatial weights in finding clusters that take into account similar
characteristics of buildings belonging to the same neighbourhood.
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Figure 6: Dendrograms of hierarchical clustering applied to the 41 TED residual time series
using the dAMH dissimilarity measure and average, complete, and single linkage method (from
left to right).

4.3 Clustering validation and characterization of clusters
Here we discuss the final partition obtained in the cluster analysis presented in the previous sec-
tion. Figure 8 shows the clusters obtained with four time-invariant characteristics of DH users,
i.e., heating surface (dam2), age class, energy class (kW h/m2/year), and yearly mean of heat
consumption (MW h/year). The results show proper features in terms of within-cluster homo-
geneity and between-cluster dissimilarity. Indeed, the boxplots in Fig. 8 show low spread and low
overlapping ranges. This analysis is useful to assess the quality of the final clustering obtained
by analyzing the TED time series. The time-invariant characteristics highlight that the cluster-
ing methodology based on dAMH groups the users well with respect to their energy performance.
Indeed, worth pointing out is that the distribution of the energy class of each identified cluster
differs appreciably. Specifically, clusters 1 and 2 include renovated buildings, while clusters 3
and 4 old non-renovated buildings. Cluster 2 comprises buildings that are slightly less efficient
and smaller than cluster 1. Instead, cluster 3 is composed of buildings that are more efficient
than those in cluster 4. The performed clustering also shows good partition in terms of age class,
with a quite pronounced between-cluster dissimilarity, except for cluster 2 that includes a large
variety of building ages. This is due to the inclusion in cluster 2 of quite efficient users con-
sisting of both new and renovated buildings. Regarding the heating surface in Fig. 8, clusters 3
and 4 have medium-small sized users, while the energy-efficient buildings of clusters 1 and 2 are
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Figure 7: The Dunn-like index (y-axis) for clustering the partition into k clusters (x-axis) (left),
and maps of the clusters (right) obtained applying hierarchical clustering with the dAMH dissimi-
larity measure and the complete linkage to the 41 TED residual time series.

divided into large and medium sized users, respectively. The yearly mean of heat consumption
follows analogous behavior to heating surface. The non-efficient buildings of clusters 3 and 4
have similar yearly consumption, while the buildings with high energy performance in clusters 1
and 2 are high and medium yearly consumption groups, respectively. In general, all the clusters
can easily be interpreted, especially in terms of energy class and building age, by separating new
and efficient users from old and inefficient ones.

In summary, the proposed dissimilarity measure allows us accurately grouping buildings ac-
cording to their energy performance regardless of size using only historical heat demand infor-
mation. The energy class is a crucial characteristic for any energy analysis. Indeed, the ability
of dAMH to identify clusters that are homogeneous in terms of energy class has several practical
implications in DH, for instance, in building renovation planning, anomaly detection, forecasting
heat demand, and management control.

5 Conclusions
In this study, we propose a new dissimilarity measure based on the Ali-Mikhail-Haq copula for
the application of hierarchical clustering algorithms to spatially located time series that present
both temporal and cross-sectional dependence. We validate the theoretical aspects of the pro-
posed dissimilarity on simulated data, and exploit the presented method to analyze observed
energy data. To this final aim, we develop a procedure to cluster variables in panel data hav-
ing characteristics suitable for the AMH copula-based dissimilarity measure. Hence, we apply
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Figure 8: Time invariant characteristics of DH users (from left to right): heating surface, age
class, energy class, and yearly mean of heat consumption for each cluster (from Cl 1 to Cl
4) obtained applying the hierarchical clustering with the dAMH dissimilarity measure and the
complete linkage to the 41 TED residual time series.

the clustering methodology to high frequency data from the DH of Bozen-Bolzano that exhibit
low dependence with tiny differences in rank correlations. Our findings show the empirical use-
fulness of the AMH-copula based approach in identifying clusters that are well interpretable in
terms of energy performance.

Our contribution responds to the current interest in the analysis of big data concerning energy
demand for a sustainable and efficient planning of smart DH systems. Indeed, empirical findings
are fundamental to support the optimal management of both the production and distribution of
DH systems. In order to capture the interconnection between the users’ energy demand, there is
a need for non-standard clustering methods that are able to cope with the temporal dependence,
the cross-sectional dependence, and the spatial information. Hence, considering the buildings’
consumption of heating, a clustering able to take into account the above-mentioned aspects can
provide crucial information when performing specific tasks for an efficient and sustainable man-
agement, such as forecasting and anomaly detection.

Despite the fact that our proposal arises from an empirical issue concerning heating demand,
it can be useful in any empirical context where the interest is in the clustering of low correlated
r.v.s observed at different geographic locations.
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A Appendix
Referring to the mathematical analysis presented in Sect. 2, we here provide more technical
results. First, we provide the mathematical expression of the functional relationship between
Kendall’s τ and θAMH [Kumar, 2010]:

τ = f
(
θAMH) = 1− 2

3

1

θAMH − 2

3

(
1− θAMH

θAMH

)2

log
(
1− θAMH) (A.1)

Next, we report the expressions of the difference between dτ and dAMH in Eq. (A.2), the differ-
ence between the partial derivatives of order 1 in Eq. (A.3) and of order 2 in Eq. (A.4) of the two
dissimilarity measures with respect to θAMH. Note that for simplicity we set θAMH = θ.

df(θ) − dAMH =cjj′

(
2

√
θ + (θ − 1)2 log(1− θ)

3θ2
−
√

2(1− θ)

)
(A.2)

∂df(θ)

∂θAMH − ∂dAMH

∂θ
=cjj′
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2(θ−2)
3θ2

+ 4(θ−1) log(1−θ)
3θ3

)
2
√

θ+(θ−1)2 log(1−θ)
3θ2

+
1√

2(1− θ)

 (A.3)

∂2df(θ)

∂θ2
− ∂2dAMH

∂θ2
=
cjj′
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(
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3 (θ(θ − 6) + (4θ − 6) log(1− θ))

θ3
√

θ + (θ − 1)2 log(1− θ)

−2
√
3 (θ(θ − 2) + 2(θ − 1) log(1− θ))2
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(
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