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Abstract
Non-negative ordered survey data often exhibit an unusually high frequency of zeros
in the first interval. Zero-inflated ordered probit models handle the excess of zeros by
combining a split probit model and an ordered probit model. In the presence of data vi-
olating distributional assumptions, standard inference based on the maximum likelihood
method gives biased estimates with large standard errors. In this paper, we consider ro-
bust inference for the zero-inflated ordered probit model based on the exponential tilting
methodology. Exponential tilting selects unequal weights for the observations in such
a way as to maximise the likelihood function subject to moving a given distance from
equally weighted scores. As a result, observations that are incompatible with the assumed
zero-inflated distribution receive a relatively small weight. Our methodology is motivated
by the analysis of survey data on cyber security breaches to study the relationship be-
tween investments in cyber defences and costs from cyber breaches. Robust estimates
obtained via tilting clearly show an effect of the investments in reducing the amount of
the loss from a cyber breach.
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I. Introduction

Cyber attacks are malignant assaults launched against single computers or a computer
network in order to gain access or make use of an asset such as customer data, patents,
product specifics etc. In today’s economy cyber attacks are becoming increasingly com-
mon threats and successful breaches are detrimental to firms, households and entire
economic sectors. Although the study of the economic impact of cyber security breaches
has gained relevance in recent years (e.g., see Romanosky 2016, Biancotti 2017, Eling
and Wirfs 2019), there is still a substantial lack of empirical research helping economists
identify the factors associated with the costs of cyber security attacks. In this regard,
most of the existing empirical work relies on survey data collected at the firm level.
For example, in this paper we consider data from the United Kingdom Cyber Security
Breaches Survey1 (CSBS). The CSBS is one of the first systematic data collection initia-

1https://www.gov.uk/government/collections/cyber-security-breaches-survey
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tives to directly assess the exposure of firms to cyber attacks and raise awareness at the
country level.

Response variables of interest in cyber security surveys often have ordinal nature and
take interval values. In the CSBS data, for instance, the cost associated with a cyber
attack (in 1,000 GBP) takes interval values [0, 0.5), [0.5, 1), [1, 5), etc. The distribution
for the cost variable reported in Table 4 shows particularly high frequency in the first
interval class containing the value zero. A popular econometric approach for ordinal
survey responses is the ordinal probit (OP) model. A useful special case of the OP model
for interval censoring is obtained by fixing the threshold parameters determining response
categories; this is often referred to as interval regression (IR) model. However, OP and
IR models are not useful when the sample distribution of the response exhibits a high
frequency for the category counting zero. Ignoring the zero-inflation feature of the data
is known to produce inaccurate estimates; e.g., see Harris and Zhao (2007); Brown et al.
(2015).

There is a vast literature on zero-inflated models in statistics and econometrics; e.g., see
the early approaches described in Mullahy (1986), Pohlmeier and Ulrich (1995), Gurmu
and Trivedi (1996), Hall (2000) and Min and Agresti (2005). Appealing models in this
class are the two-stage type models since they relax the assumption that the zeroes and
strictly positive observations come from the same data-generating process. This enables
one to assess separately, within a regression context, the impact of independent variables
on zero and non-zero outcomes. Harris and Zhao (2007) develop the zero-inflated ordered
probit (ZIOP) model consisting of a combination of a split probit model to describe
the inflation at zero and an ordered probit model. In recent years, ZIOP models have
proved useful in a variety of applications; e.g., see Downward et al. (2011), Jiang et al.
(2013), Bagozzi et al. (2015) and Tan and Yen (2017). Gurmu and Dagne (2012) consider
Bayesian estimation with applications to tobacco use data, while Das and Das (2018)
develop a zero-inflated semi-parametric ordinal model with a non-linear link between an
ordinal response variable and a set of covariates. Brown et al. (2015) consider the zero-
inflated interval regression (ZIIR) model, a special case of the ZIOP model with boundary
parameters for each ordinal category fixed, and apply it to primary care survey data.

Although ZIOP and ZIIR models are more realistic compared to their traditional
counterparts (OP and IR, respectively), inference is inaccurate when the model is mis-
specified, i.e. when the data distribution deviates to some extent from the assumed
nominal model. Estimation is currently mostly limited to the maximum likelihood (ML)
methodology, which has poor performance in the presence of model mis-specifications.
Motivated by these limitations, we develop a robust estimator for zero-inflated models
using the general framework of exponential tilting. Data tilting involves replacing uniform
data weights with more flexible weights to render parametric procedures more robust
to model mis-specifications and obtain greater fitness. In addition, the tilted weights
produce a natural ordering of the observations with respect to their compatibility with
the assumed model, thus enabling outlier detection. Here, we propose to obtain weights
in such a way as to maximise the likelihood function subject to moving a given distance
(Kullback-Leibler divergence) from equally weighted scores. The use of tilting has been
previously investigated by Hall and Presnell (1999), Choi et al. (2000), Critchley and
Marriott (2004), Camponovo and Otsu (2012), Genton and Hall (2015), and Ferrari and
Zheng (2016), among others. Although our development focuses on ZIIR models due to
the nature of our application, an extension of the methodology for general ZIOP models
is straightforward using analogous principles.
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The exponential tilting methodology for the ZIIR model is applied to the 2018-2019
CSBS data. To the best of our knowledge, this is the first work applying a zero-inflated
regression approach to cyber security data. The ZIIR model is particularly suited for this
application since it allows us to simultaneously estimate the probability of sustaining
a loss and a regression model for the sustained cost when this actually occurs. Our
analysis shows that the normality assumption underlying the latent processes in the
first- and second-stage probit models are violated for the CSBS data. This makes our
tilting estimation technique useful to better understand the determinants underpinning
costs of cyber breaches. Such insights are relevant for managing firms and institutions,
formulating policies and for formulating economic theories. In particular, the relation
between the costs of cyber breaches and the investments in cyber defence deserves to be
further investigated.

The paper is organized as follows. In Section II, we introduce the ZIIR model and
describe the proposed exponential tilting estimation method. In Section III, we present
Monte Carlo experiments assessing the performance of the robust method in comparison
to the standard ML approach. In Section IV, we apply our methodology to the CSBS
data and discuss the results. In Section V, we conclude and provide indications for future
research.

II. Methodology

Zero-inflated interval regression

The CSBS survey report monetary loss from cyber attacks on an interval scale; thus the
real loss may be naturally viewed as a latent variable. Let Y ∗i be the actual (unobservable)
monetary loss sustained by company i. Although we cannot directly observe Y ∗i , we can
observe the ordered categories

Yi =


0, if Y ∗i < γ1,
1, if γ1 < Y ∗i < γ2,
...
K, if Y ∗i > γK ,

where γ = (γ1, . . . , γK)T is a vector of given threshold values. For the unobservable
response of interest, Y ∗, we assume a two-stage selection model. Note that we focus on
the case where the thresholds are fixed; this is a special case of the ZIOP model called
zero-inflated interval regression (ZIIR). However, the inference methods developed in the
reminder of the paper are also appropriate in the case of unknown thresholds, provided
that adequate parameter restrictions ensuring model identifiability are introduced.

The unobservable monetary loss for an individual organization is modelled in two
stages. In the first stage, we specify the probability that an actual loss occurs using the
following multivariate latent model. Let Si be a binary variable indicating whether a loss
occurs for the ith individual; particularly, Y ∗i = 0 if Si = 0 and Y ∗ > 0 if Si = 1. The
dependence between Si and a p× 1 vector of covariates xi observed for firm i is given by
the probit model:

S∗i = x>i β
(1) + U

(1)
i , (2.1)

Si = I(S∗i > 0), i = 1, . . . , n,
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where β(1) is a p× 1 vector of unknown parameters, (U
(1)
1 , . . . , U

(1)
n ) are random errors

assumed to follow a n-variate normal distribution with mean E(U (1)) = 0 and covariance

matrix Σ(1) = σ(1)In.
The second stage of our model specifies how much a firm loses when such a loss does

occur. Particularly, we assume the latent regression model:

Y ∗i = z>i β
(2) + U

(2)
i , i = 1, . . . , n, (2.2)

where zi is a q× 1 vector of covariates observed on firm i (possibly equal to xi in (2.1)),

(U
(2)
1 , . . . , U

(2)
n )T are random errors following a n-variate normal distribution with mean

E(U (2)) = 0 and covariance matrix Σ(2) = σ(2)In. As will be discussed later, we do
not require the independence of the error terms in (2.1) and (2.2); differently from the
traditional ML estimator, our method is robust and produces valid inferential results in
the presence of dependent outcomes, for example due to serial correlation.

Let θ be the overall parameter vector including parameters β(1), β(2), σ(1) and σ(2).
Based on (2.1) and (2.2), we can write the univariate zero-inflated distribution of the
observed response Yi as follows:

P (Yi = l; xi, zi,θ) =

{
P (Si = 0;β(1)) + P (Si = 1;β(1))P (Yi = 0|Si = 1,β(2),γ), l = 0,

P (Si = 1;β(1))P (Yi = l|Si = 1;β(2),γ), l 6= 0,

(2.3)

where P (Si = 0;β(1)) = Φ(−x>i β
(1)), P (Si = 1;β(1)) = 1− P (Si = 0;β(1)), with Φ(·; v)

denoting the cumulative distribution function of a univariate normal random variable
with variance v. The conditional probability of Yi given Si = 1 is then written explicitly
as

P (Yi = l|Si = 1;β(2),γ) =Φ(γl+1 − z>i β
(2))− Φ(γl − z>i β

(2)), l = 0, . . . ,K,

where γK+1 =∞ and γ0 = −∞.

Robust inference by exponential tilting

Let π = (π1, . . . , πn)> be a vector of multinomial probabilities on n points. Given n
observations y1, . . . , yn, we define the tilted log-likelihood function by

`π(θ) =

n∑
i=1

πi logP (Yi = yi; xi, zi,θ), (2.4)

where P (Yi = yi; xi, zi,θ) is defined in (2.3). The πi’s are regarded as sampling proba-
bilities applied to the n observations under non-parametric bootstrap re-sampling Hall
(2000); Genton and Hall (2015). We propose weighting by πi the contribution from Yi to
the log-likelihood, and choose πi to be small when Yi is relatively unlikely to come from
a population with the ZIIR model given in Section II. To this end, we compute tilting
probabilities π̂ = π̂(θ) solving the following program:

maxπ `π(θ), s.t.: DKL(π;πunif ) = δ,

n∑
i=1

πi = 1, (2.5)
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where

DKL(π;πunif ) =

n∑
i=1

πi log(nπi) (2.6)

represents the Kullback-Leibler divergence between the candidate sampling probability
π = (π1, . . . , πn)> and the uniform weights πunif = (1/n, . . . , 1/n)>. The resulting
weights may be interpreted as obtained by tilting a uniform prior, on the sample, so as
to move away a given distance δ, from the uniform distribution. Such a movement occurs
in the direction that gives most emphasis to data that enjoy larger likelihood.

By the Lagrange multiplier method, it is easy to check that the solution of the opti-
mization problem (2.5) has the folliwng explicit solution for the bootstrap weights

π̂
(α)
i (θ) =

P (Yi = yi; xi, zi,θ)α∑n
j=1 P (Yj = yj ; xj , zj ,θ)α

, i = 1, . . . , n, (2.7)

where α ≥ 0 is a constant that may be found, given δ, by solving the equationDKL(π̂(α)) =
δ. Due to this correspondence between δ and α, we avoid solving this last equation and
focus directly on α as a tuning constant for the tilting method.

Given a desired level of tilting α ≥ 0, the tilted estimator θ̂
(α)

is found by replacing
π = π̂(α)(θ) in (2.4) and then maximizing

`π̂(α)(θ) =

n∑
i=1

π̂
(α)
i (θ)× logP (Yi = yi; xi, zi,θ) (2.8)

with respect to θ. Maximization of the above objective function is carried out numerically

using a standard Newton-type algorithm. When α = 0, we have π̂
(α)
i (θ) = 1 for all

i = 1, . . . , n, which corresponds to standard ML estimation. In this case, no adjustment
of the data distribution through tilting occurs and the final estimates might be affected
by a few very unusual observations corresponding to poor data likelihood. For α > 0, the
impact of the contribution from the ith unit on the overall log-likelihood is moderated

by the weight π
(α)
i (θ); specifically, observations with larger likelihood will contribute

substantially to (2.8), whereas observations incompatible with the assumed model will
receive a relatively low weight.

Under appropriate regularity conditions, standard arguments from M -estimation the-
ory may be applied to derive the asymptotic normal distribution of the tilted estimator

θ̂
(α)

Choi et al. (2000). Its covariance matrix takes the usual sandwich form

V(α)(θ) = J(α)(θ)−1K(α)(θ)J(α)(θ)−1, (2.9)

where J(α)(θ) = −E{∇2`π̂(α)(θ)} and K(α)(θ) = V ar{∇`π̂(α)(θ)} are the sensitivity and
variability matrices, respectively, with ∇ and ∇2 denoting, respectively, the gradient and

hessian operators with respect to the parameter vector θ. An estimate V̂
(α)
boot of V(α) is

computed as

V̂
(α)
boot =

n

R− 1

R∑
r=1

(
θ̂
(α)

r − ¯̂
θ(α)

)(
θ̂
(α)

r − ¯̂
θ(α)

)>
, (2.10)

where θ̂
(α)

1 , . . . , θ̂
(α)

R are estimates of θ for given α computed via standard non-parametric

bootstrap techniques and
¯̂
θ(α) = R−1

∑R
r=1 θ̂

(α)

r denotes their average.
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Selection of the tilting constant α

The choice of the appropriate amount of tilting may be performed using a bootstrap
approach. In particular, we choose α by minimizing the following bootstrap estimate of

the mean squared error (MSE) of θ̂
(α)

:

M̂SEboot(α) =
∥∥∥θ̂(α) − ¯̂

θ(α)
∥∥∥2
2

+ n−1Tr
(
V̂

(α)
boot

)
, (2.11)

where Tr(A) denotes the trace of the matrix A,
¯̂
θ(α) = R−1

∑R
r=1 θ̂

(α)

r is the average of R

bootstrapped estimates and V̂
(α)
boot is their sample covariance matrix given in (2.10). When

contamination is absent and all the observations are compatible with the assumed data
generating process, no tilting is required and the best choice is α = 0 (corresponding
to the ML estimator) since this option guarantees optimal MSE in large samples. In
the presence of deviations of the data distribution from the assumed model, estimation
accuracy is improved by letting α > 0. We found in numerical experiments that values of
α greater than 1 correspond to overly large bootstrap MSE estimates, whereas the best
performance is recorded when 0 < α ≤ 1.

III. Monte Carlo experiments

To assess the accuracy of the proposed method, Monte Carlo samples of size n are
generated to include (1− ε)× n clean data from the ZIIR model in Section II and ε× n
outliers. We consider various specifications of the contamination level 0 ≤ ε ≤ 0.5 and
tilting parameter α. Results are then compared to the ML approach, corresponding to α =
0. The simulation setup is based on parameter values equal to β(1) = (−0.1, 0.2)>, β(2) =
(2, 2)>, γ = (−5, 0, 5)>, and σ(1) = σ(2) = 1. The two fixed covariates in each vector xi
are generated as independent draws from a standard bivariate normal distribution. In
the case of no contamination with ε = 0, such a setting produces an inflated zero class
frequency and sizable frequencies for the remaining positive classes. When ε > 0, outliers
are generated according to the three experimental settings detailed below.

(i) Experiment 1: Contaminated hurdle probit. The contamination occurs in the latent
component of the first-stage probit model (2.1). Specifically, a contaminated sample
is obtained by generating ε × n realizations of S∗ from the rescaled and shifted

Gaussian distribution N(µ
(1)
ε + x>i β

(1), σ(1)/10), where µ
(1)
ε is a location shift in

the latent component of the probit. For illustration purposes, we present results for

µ
(1)
ε = −5, which mimics a relatively high proportion of zeros.

(ii) Experiment 2: Contaminated latent regression model. The contamination occurs in
the latent component of the second-stage regression model in (2.2). Specifically, a
contaminated sample is obtained by generating ε × n realizations of Y ∗ from the

rescaled and shifted Gaussian distribution N(5 + x>i β
(2), σ(2)/2), where µ

(2)
ε is a

location shift in the latent component of the probit. For illustration purposes, we

present results for µ
(2)
ε = 5 to obtain asymmetric outliers affecting the right tail of

the error distribution.
(iii) Experiment 3: Correlated latent errors. We draw ε× n observations of Y from the

distribution specified in (2.3) with autocorrelated error terms at both modeling

stages. In more detail, we set (U
(s)
1 , . . . , U

(s)
n ) ∼ Nn(0,Σ) for s = 1, 2, where Σ is a
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correlation matrix with unit diagonal elements and off-diagonal elements equal to
0 < ρ < 1. For illustration purposes, we consider ρ = 0.25, 0.75.

The performance of the tilted estimator is evaluated in terms of the MSE computed
over B = 1000 Monte Carlo runs

M̂SEMC =
1

B

B∑
b=1

∥∥∥θ̂(α)b − θ0
∥∥∥2 , (3.12)

where θ̂
(α)

b , b = 1, . . . , B is the vector of parameter estimates obtained at each run for a
given tuning constant α, and θ0 is the true vector of coefficients.

Tables 1 - 3 show Monte Carlo MSEs with simulation standard errors reported in
parentheses. As expected, the value α = 0 corresponding to no tilting fails to ensure
robustness in all the considered settings, with the MSE typically increasing with the
size of contamination level ε. On the other hand, values of the tilting parameter α > 0
afford greater robustness to outliers. As the contamination level grows, the optimal α
minimizing the MSE also tends to increase with values between α = 0.3 and α = 0.7
working reasonably well across several experimental scenarios.

TABLE 1
Monte Carlo MSE estimates of the model described in Experiment 1.

α
ε

0 0.05 0.10 0.20 0.30 0.40 0.50

0 0.632 0.487 0.437 0.433 0.678 1.282 3.814
(0.092) (0.083) (0.082) (0.079) (0.103) (0.170) (0.335)

0.01 0.589 0.477 0.425 0.411 0.640 1.222 3.397
(0.089) (0.083) (0.082) (0.078) (0.099) (0.166) (0.285)

0.05 0.462 0.386 0.345 0.324 0.517 0.876 2.525
(0.074) (0.073) (0.073) (0.068) (0.084) (0.116) (0.237)

0.10 0.406 0.326 0.284 0.254 0.400 0.634 1.721
(0.071) (0.067) (0.067) (0.060) (0.071) (0.088) (0.175)

0.30 0.101 0.081 0.067 0.085 0.216 0.294 0.527
(0.036) (0.036) (0.037) (0.041) (0.060) (0.054) (0.070)

0.50 0.067 0.053 0.045 0.041 0.055 0.093 0.211
(0.029) (0.029) (0.029) (0.029) (0.032) (0.036) (0.050)

0.70 0.054 0.048 0.046 0.043 0.046 0.062 0.099
(0.025) (0.026) (0.027) (0.028) (0.031) (0.034) (0.039)

1 0.070 0.064 0.063 0.058 0.055 0.061 0.075
(0.026) (0.027) (0.029) (0.029) (0.032) (0.036) (0.040)

Notes: Each simulated sample, based on 1000 runs of the model, includes a
fraction ε of observations obtained by contaminating the latent component of
the first-stage probit model. Simulation standard errors are reported in paren-
theses.
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TABLE 2
Monte Carlo MSE estimates of the model described in Experiment 2.

α
ε

0 0.05 0.10 0.20 0.30 0.40 0.50

0 0.632 0.496 0.428 0.413 0.411 0.701 0.731
(0.092) (0.100) (0.093) (0.108) (0.118) (0.126) (0.122)

0.01 0.589 0.465 0.406 0.407 0.425 0.770 0.821
(0.089) (0.098) (0.090) (0.105) (0.115) (0.120) (0.116)

0.05 0.462 0.397 0.374 0.441 0.560 1.091 1.204
(0.074) (0.093) (0.084) (0.096) (0.105) (0.101) (0.098)

0.10 0.406 0.394 0.422 0.592 0.823 1.521 1.674
(0.071) (0.092) (0.083) (0.092) (0.094) (0.082) (0.078)

0.30 0.101 0.771 0.978 1.452 2.026 2.980 3.131
(0.036) (0.095) (0.077) (0.067) (0.059) (0.044) (0.044)

0.50 0.067 1.390 1.677 2.289 2.959 3.907 4.011
(0.029) (0.101) (0.075) (0.057) (0.045) (0.030) (0.031)

0.70 0.054 1.940 2.259 2.926 3.611 4.512 4.582
(0.025) (0.101) (0.071) (0.048) (0.036) (0.023) (0.024)

1 0.070 2.580 2.919 3.611 4.280 5.104 5.143
(0.026) (0.095) (0.063) (0.039) (0.028) (0.017) (0.018)

Notes: Each simulated sample, based on 1000 runs of the model, includes a
fraction ε of observations obtained by contaminating the latent component
of the second-stage probit model. Simulation standard errors are reported in
parentheses.

Table 3 reports simulation outputs referred to Experiment 3, where latent errors exhibit
positive autocorrelation ρ in both first-stage hurdle probit and second-stage ordered
regression models. In order to investigate the effect of the correlation on estimation
accuracy, we show results obtained when the correlation is mild (ρ = 0.25) or strong
(ρ = 0.75). Note that the bias given by the increased correlation can be severe, with
the MSE inflating dramatically under strong contamination with ε = 0.5. Adjusting the
amount of tilting by raising α appears to be quite effective in mitigating the undesired
effects of the error autocorrelation.

IV. An application to cyber security survey data

Cyber security attacks have long been acknowledged as a severe threat to companies and
the entire economy (Kelly, 1999; CEA, 2018). In recent years, an increasing amount of
funds is spent worldwide on cyber security programs and awareness campaigns. Despite
this increasing interest, there is a substantial lack of applied studies to help identify the
factors associated with the cost of cyber breaches. The analysis in this paper contributes
to our understanding of the relationship between investments in cyber defences and
costs occurred from cyber attacks at the firm level. Empirical results in this area provide
useful information to facilitate the development of well-targeted economic theory and
managerial policies.
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TABLE 3
Monte Carlo MSE estimates of the model described in Experiment 3.

ρ = 0.25

α
ε

0 0.05 0.10 0.20 0.30 0.40 0.50

0 0.624 0.622 0.619 0.624 0.637 0.643 0.673
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.010)

0.01 0.590 0.591 0.588 0.591 0.609 0.614 0.646
(0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.010)

0.05 0.484 0.484 0.482 0.483 0.498 0.506 0.534
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.008)

0.10 0.410 0.410 0.401 0.397 0.408 0.408 0.431
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

0.30 0.104 0.105 0.107 0.110 0.119 0.131 0.148
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003)

0.50 0.075 0.076 0.075 0.075 0.077 0.081 0.086
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002)

0.70 0.056 0.057 0.057 0.057 0.061 0.065 0.068
(0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

1 0.073 0.074 0.074 0.075 0.077 0.081 0.083
(0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

ρ = 0.75

0 0.624 0.621 0.625 0.633 0.694 0.768 1.023
(0.009) (0.009) (0.009) (0.010) (0.012) (0.014) (0.023)

0.01 0.590 0.590 0.594 0.605 0.670 0.738 0.959
(0.008) (0.008) (0.009) (0.010) (0.012) (0.014) (0.020)

0.05 0.484 0.483 0.487 0.498 0.559 0.618 0.807
(0.007) (0.007) (0.007) (0.008) (0.010) (0.011) (0.016)

0.10 0.410 0.408 0.395 0.400 0.447 0.498 0.637
(0.006) (0.006) (0.006) (0.007) (0.008) (0.010) (0.013)

0.30 0.104 0.106 0.111 0.123 0.165 0.211 0.275
(0.002) (0.002) (0.002) (0.003) (0.004) (0.005) (0.007)

0.50 0.075 0.075 0.077 0.081 0.096 0.110 0.137
(0.001) (0.001) (0.002) (0.002) (0.003) (0.004) (0.004)

0.70 0.056 0.057 0.058 0.062 0.073 0.085 0.099
(0.001) (0.001) (0.001) (0.002) (0.003) (0.003) (0.004)

1 0.073 0.074 0.075 0.078 0.087 0.094 0.104
(0.001) (0.001) (0.001) (0.002) (0.003) (0.004) (0.004)

Notes: Monte Carlo MSE estimates based on 1000 samples of size n = 1000.
Each simulated sample includes a fraction ε of observations with correlated
errors in the first-stage probit and second-stage ordered probit models (corre-
lation ρ = 0.25, 0.75). Simulation standard errors are reported in parenthesis.

Data

The Cyber Security Breaches Survey (CSBS) is an annual study of businesses and chari-
ties in the United Kingdom. It represents one well-established official data source on cyber
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security collected recurrently by a government body. The UK government has been very
active in monitoring risks from cyber attacks; in this regard, the CSBS influences how
the government shapes future policy, allows organizations to compare their cyber security
with others and demonstrates the trends in this rapidly evolving area. Here we exam-
ine a data set obtained by combining two recent surveys taken between October and
February of 2017/2018 and 2018/2019. Interviewed companies and charities were asked
about their approach to cyber security and any breaches over the 12 months preceding
the interview. In our analysis, we focus on for-profit companies. The resulting data are
not panel data since the two years may not contain measurements on the same firms and
firms are assigned different anonymous labels in the two years. The presence of repeated
measurements on the same firms violates the standard assumption of independence for
the errors in the standard ZIIR model described in Equations (2.1) and (2.2).

In the remainder of this section we overview the main features of our data set; for a
complete description of the survey methodology and variables, see the technical annex
provided on the CSBS website2. The main response of interest is the cost related to
all breaches experienced in the 12 months preceding the interview. Information on the
cost is collected through the question “Approximately how much, if anything, do you
think the cyber security breaches or attacks you have experienced in the last 12 months
have cost your organization financially?”. In order to prevent the possibility of individual
organizations being identified, only banded costs were made publicly available instead of
the exact cost figures. Table 4 shows the observed frequencies for each cost band. About
23% of the companies interviewed declared costs in the first interval class between 0 and
500 GBP. This class includes companies that had exactly zero costs mixed with those
sustaining small yet non-zero costs.

TABLE 4
Observed frequency (N) and percent relative frequency (%) for the cost

intervals in the 2018, 2019 surveys and in the aggregated data.

Cost intervals (1000 GBP)
2018 2019 Combined

N % N % N %

[0, 0.5) 36 23.8 29 21.5 65 22.7
[0.5, 1) 19 12.6 19 14.1 38 13.3
[1, 5) 38 25.2 42 31.1 80 28.0
[5, 10) 19 12.6 21 15.6 40 14.0
[10, 20) 18 11.9 7 5.2 25 8.7
[20, 50) 11 7.3 11 8.1 22 7.7
[50, 100) 3 2.0 3 2.2 6 2.1
[100,∞) 7 4.6 3 2.2 10 3.5

Total 151 100.0 135 100.0 286 100.0

In our empirical study, we focus on the impact of various independent variables on the
cost response. Table 5 lists the main predictors considered, with their description and
summary statistics. To assess whether investments affect the costs associated with cyber

2https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2019
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security over time, the main predictor of interest is the banded variable Invest, repre-
senting the GBP amount invested in cyber security. Other relevant predictors are the
number of breaches (Numbb), and the presence of a cyber security incident management
process (Incid). Industry type and company’s size are controlled for by dummies for 12
industrial sectors (UK Standard Industrial Classification) and the sales turnover in mil-
lion GBP (Sales), respectively. Observations on the above variables are collected through
the questions: “In the financial year just gone, approximately how much, if anything, did
you invest in cyber security?”; “Approximately, how many breaches or attacks have you
experienced in total across the last 12 months?”; “Do you have any formal cyber secu-
rity incident management process, or not?”. The time predictor is coded as a numerical
variable taking values 1 and 2 for 2018 and 2019, respectively.

TABLE 5
Main predictors

Predictor Description
2018 2019

Mean SE Mean SE

Incid Incident management process available? (%) 34.4 3.9 46.7 4.3
Sales Turnover (1,000,000 GBP) 16.1 1.5 14.6 1.6
Invest Investment in the last 12 months (1,000 GBP) 137.2 44.1 118.7 38.7
Numbb Number of attacks in the last 12 months 139 44 1,626 1,043
Admin Administration or real estate sector (%) 7.3 2.1 11.1 2.7
Constr Construction sector (%) 13.9 2.8 8.1 2.3
Educa Education sector (%) 6.0 1.9 5.9 2.0
Entert Entertainment, service or membership sector (%) 5.3 1.8 4.4 1.8
FinIns Finance or insurance sector (%) 9.3 2.4 6.7 2.1
FoodHos Food or hospitality sector (%) 6.0 1.9 2.2 1.3
Health Health, social care or social work sector (%) 4.0 1.6 5.2 1.9
InfoCom Information or communication sector (%) 8.6 2.3 7.4 2.2
SciPro Professional, scientific or technical sector (%) 13.9 2.8 12.6 2.8
Retail Retail or wholesale sector (%) 13.9 2.8 14.8 3.0
Transp Transport or storage sector (%) 4.6 1.7 9.6 2.5
Util Utilities or production sector (%) 7.3 2.1 11.9 2.8

Notes: Sample means and sample proportions (Mean) computed for banded and dummy variables,
respectively, with corresponding standard errors (SE). For banded variables, the mid-point of each
interval class is considered.

Results

Parameter estimates for the ZIIR models corresponding to the optimal tilting parameter
α = 0.74 are reported in Table 6; the tilting constant was selected via the bootstrap
MSE minimization described in Section II. ML estimates without tilting (corresponding
to α = 0) are also shown for comparison. The response variable in our model is the
cost intervals mid-point transformed on the logarithmic scale. In the first stage equation,
we included the industrial sectors as predictors for the probability of non-zero costs; in
the second stage equation, we considered all the remaining predictors listed in Table 5.
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To assess the potential change of investment and its effect on costs, we included the
interaction between time and investment (Time×Invest). We consider the logarithm of
the interval mid-point for all banded predictors. In order to enable comparison, we report
the results of four alternative models in Table 7: probit and logit models, linear regression
estimated by ordinary least squares (OLS), and interval regression (IR) estimated by ML.
For the probit and logit models, the response variable is coded as 0 for the first class
containing 0 (representing costs between 0 and 500 GBP) and 1 for the other classes
(costs greater than 500 GBP). For linear regression, the response is coded by taking the
mid-point of each interval class and then transforming on the logarithmic scale.

πî
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Figure 1. Left: Distribution of the tilted sampling weights π̂
(α)
i with α = 0.74 for the

CSBS survey data; the vertical line represents the original sampling weight 1/n
corresponding to α = 0. Right: Box-plots showing the distribution of the tilted

sampling weights π̂
(α)
i (on the log-scale) grouped by cost bands.

Figure 1 (left) shows the distribution of the tilted sampling weights π̂
(α)
i with α = 0.74

with the vertical line representing the original sampling weight 1/n corresponding to
α = 0. Figure 1 (right) shows the distribution of the tilted sampling weights on the log-
scale grouped by cost band. Whereas a fair proportion of the data receive relatively large
weights (larger than 1/n), the sample also contains many observations which appear to be
inconsistent with the ZIIR model specifications. The inconsistent observations are more
likely to occur for moderate or lower costs. This may be partly due to the the presence
of a substantial number of statistical units surveyed in both sampled years.

The estimates of the first-stage equation of the tilted version of the model reveals some
degree of heterogeneity among the industrial sectors. The Administration or Real Estate
sector exhibits the highest coefficient (5.67), meaning that firms in that sector are more
likely to sustain losses from cyber attacks. On the other hand, the Health sector has the
lowest coefficient (1.08) and is the least likely affected. The probit and logit models in
Table 7 confirm the estimated sizes – including the relevance of Administration or Real
Estate sector.
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TABLE 6
Estimates for the zero-inflated interval regression model with and without

exponential tilting.

ZIIR (α = 0) Tilted ZIIR (α = 0.74)

β̂
(1)
j (SE) β̂

(2)
j (SE) β̂

(1)
j (SE) β̂

(2)
j (SE)

Const − −6.03(1.53)? − −4.37(1.05)?
Incid − 0.09(0.22) − −0.27(0.18)
Sales − 0.19(0.07)? − 0.16(0.05)?
Invest − 0.50(0.16)? − 0.38(0.10)?
Time − 1.28(0.96) − 1.28(0.71)?
Invest×Time − −0.16(0.10) − −0.13(0.07)?
Numbb − 0.07(0.04) − 0.05(0.04)
Admin 11.18(24.57) − 5.67(1.96)? −
Constr 1.06(1.05) − 1.28(0.56)? −
Educa 1.01(2.01) − 1.29(1.59) −
Entert 1.54(2.61) − 1.60(2.20) −
FinIns 1.35(2.25) − 1.27(1.50) −
FoodHos 5.21(6.84) − 1.28(3.55) −
Health −0.02(0.58) − 1.08(0.27)? −
InfoCom 1.02(1.56) − 1.31(0.72) −
SciPro 1.12(6.67) − 1.22(0.27)? −
Retail 0.99(0.47)? − 1.37(0.15)? −
Transp 0.80(1.50) − 1.14(0.51)? −
Util 0.69(0.77) − 1.11(0.18)? −

M̂SEboot(α) 735.43 33.78

Notes: In parentheses, we report the bootstrap standard error obtained based on 2000
bootstrap re-samples. Coefficients different from zero at the 0.05 level of significance

are marked by “?”. The last line reports the mean squared error statistics M̂SEboot(α)
given in Section II.

The estimates for the second-stage interval regression model highlight a significant
interaction between Investments and Time. The estimated effect of investments on the
amount of cost changes from 0.38 − 0.13 × 1 = 0.25 in 2018 to 0.38 − 0.13 × 2 = 0.12
in 2019, showing a nearly twofold reduction in the effect of investment within one year.
The standard OLS and IR models confirm this result by showing significant negative
interactions. These findings support the hypothesis that the investments are effective in
reducing the cost amount of a cyber attack. The estimates for the second-stage model
also indicate a positive significant effect on the response of the variable Sales, which is
found statistically significant also by OLS model in Table 7. The estimated effect of firm
size (measured here in terms of sales turnover) is in line with the results obtained by Ro-
manosky (2016) and Aldasoro et al. (2020). The estimated coefficient for the Investment
main effect is positive and significant. This is probably due to endogeneity, as also noted
by Gandal et al. (2020) and by Woods and Böhme (2021).

Figure 2 compares the observed frequency for the cost bands with the estimated fre-
quencies for α = 0 and α = 0.74. Both choices give a reasonable fit with Pearson chi-
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TABLE 7
Estimates from four alternative regression models

Probit Logit OLS IR

β̂j (SE) β̂j (SE) β̂j (SE) β̂j (SE)

Const − − −6.13(1.38)? −76.02(25.78)?
Sales − − 0.15(0.06)? 1.22(1.11)
Invest − − 0.55(0.13)? 8.03(1.62)?
Time − − 1.39(0.78) 26.11(13.56)
Invest×Time − − −0.17(0.08)? −3.32(1.18)?
Numbb − − 0.07(0.04) 0.26(0.77)
Incid − − −0.14(0.22) 2.44(3.76)
Admin 1.20(0.32)? 2.04(0.61)? − −
Constr 0.78(0.25)? 1.27(0.43)? − −
Educa 0.72(0.33)? 1.18(0.57)? − −
Entert 1.07(0.41)? 1.79(0.76)? − −
FinIns 1.12(0.33)? 1.90(0.62)? − −
FoodHosp 0.97(0.43)? 1.61(0.77)? − −
Health −0.10(0.35) −0.15(0.56) − −
InfoCom 0.81(0.29)? 1.33(0.50)? − −
SciPro 0.63(0.22)? 1.03(0.37)? − −
Retail 0.86(0.22)? 1.42(0.39)? − −
Transp 0.67(0.30)? 1.10(0.52)? − −
Util 0.43(0.25) 0.69(0.41) − −

Notes: IR: ordinal probit interval regression. Standard errors are reported in
parentheses. Coefficients different from zero at the 0.05 level of significance are
marked by “?”.

square statistics comparing the observed and expected distributions of 3.58 and 5.40 for
α = 0 and α = 0.74, respectively (corresponding to p-values of 0.82 and 0.61 based on
a chi-square distribution with seven degrees of freedom). However, the estimated MSE
improves dramatically, dropping from 735.43 to 33.78 when α is increased from 0 to
0.74. The superior accuracy of the tilted estimates is also confirmed by the bootstrap
standard errors of the tilted estimator, which are clearly smaller than those obtained
with α = 0. Overall our empirical results confirm the findings from the Monte Carlo
simulations presented in Section III.

V. Conclusions

We consider estimation by exponential tilting of the ZIIR model that allows for zero
and non-zero observations to be generated by two different behavioural regimes. The
proposed method consists of tilting the empirical distribution of the data so to emphasize
observations with greater likelihood. The tilting procedure is a robust generalization of
the ML method: when the tilting parameter equals α = 0, observations receive equal
weights; when α > 0, the resulting estimator is shown to mitigate issues related to the
presence of observations inconsistent with the ZIIR model, and enables one to detect the
presence of potential outliers in survey data.
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Figure 2. Observed versus estimated frequencies for the response cost intervals without
tilting (α = 0) and with tilting (α = 0.74). Computation of the estimated frequencies

and selection of the optimal tilting parameter are described in Section II.

Our empirical analyses highlight several advantages of the tilted estimator for the ZIIR
model. Monte Carlo experiments show that tilting improves estimation accuracy in the
presence of data deviating from the assumed ZIIR model under different scenarios con-
cerning the actual data generating process. Particularly, when a fraction of observations
has correlated errors in the latent equations, the ZIIR model estimated via tilting clearly
outperforms the non-tilted ML estimator. This aspect is relevant for the analysis of the
CSBS data set, where correlation among units is likely to occur since each company
can be surveyed at the two time points. The increased accuracy resulting from tilting is
also reflected in our empirical studies by the smaller size of the standard errors for the
parameter estimates and of the bootstrap MSE with respect to those obtained via ML
estimation.

The tilted ZIIR model is applied to the CSBS data to evaluate the impact of in-
vestments in cyber security on costs suffered by companies following cyber attacks and
breaches. Despite the increasing interest of the private and public sectors in the economics
of cyber security, which mirrors the increased number of cyber attacks, the research on
the determinants of the costs from cyber breaches is still in its infancy. Our study pro-
vides new evidence supporting the effectiveness of investments in cyber security. Robust
estimates obtained via tilting clearly show an effect of the investments in reducing the
amount of the loss from a cyber breach over time. The firm size is another significant
determinant of the costs.

Although our study provides important elements to better understand the costs arising
from cyber breaches, further analyses will be useful, possibly leading to modifications of
the basic ZIIR model for cyber security survey data. One advantage of the exponential
tilting procedure is the ability to produce ranks of the observations with respect to their
degree of compatibility with the nominal ZIIR model based on the tilted weight. A more
detailed examination of the observations with relatively low weight would then lead
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to useful modifications of the theoretical model assumptions. For example, a suitable
correlation structure for the errors in the model Equations (2.1) and (2.2) should be
explored, possibly in relation with firm demographics. Moreover, the second stage of the
model could further specify the type of attack (or the type of investment) for investigating
whether certain attacks are more damaging (or some investments are more effective
in mitigating the losses). Finally, the role of sector heterogeneity also requires further
investigations: for instance, a pair-wise analysis of firms could provide insights on the
relative exposure to losses in each industrial sector.
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