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properties of the model, develop a Bayesian inference framework and an efficient
Markov Chain Monte Carlo algorithm for estimating parameters, latent states, and
endogenous network layers. An application to the US-state coincident indicators
shows that the synchronization in the US economy is generated by network effects
among the states. The inclusion of a multi-layer network provides a new tool for
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1 Introduction

This paper introduces a new Markov-switching model for panel data. The dynamics
of each series is driven by its own hidden Markov chain process, which interacts
with the other chains of the panel within a multi-layer network. One of the
most interesting theoretical properties of the proposed model is that the network
interaction effects naturally allow for the endogenous synchronization of the time
series, irrespective of the exogenous, or endogenous nature, of the interaction
network. Moreover the multi-layer structure of the networks allows us to specify
or identify different channels of interaction. The model is well suited to fitting
complex dynamics and extracting the nonlinear dependence structures present in
panel data. Below, we provide a more detailed discussion of the contributions of
this paper in terms of modelling, inference and application.

Markov switching (MS) models have been extensively used in macroeconomics
and finance to extract the different phases, or regimes, of the market. Originally, MS
models were applied to univariate series Hamilton (1989), or to small sets of series,
and the hidden Markov chains were assumed with constant transition probabilities,
thus not varying over time. These assumptions have been challenged by recent
literature. The use of large databases has been shown to be very important in
achieving better forecasting Bańbura et al. (2010) and fitting Stock and Watson
(2014) performances. Secondly, time-varying MS processes provide more accurate
fitting. This is particularly true when different units of the panel (e.g. countries
or states) are grouped together Kaufmann (2010) and common factors drive the
transition, (e.g., see Kaufmann, 2015; Billio et al., 2016). So far, modelling solutions
have focused on medium-sized panels with series-specific chains driven by a common
factor (e.g., see Billio et al., 2016; Casarin et al., 2018)), or on reducing the number
of latent chains by assuming a clustering model for the observed series (e.g., see
Hamilton and Owyang, 2012; Kaufmann, 2015; Francis et al., 2017; Owayng et al.,
2019). We expand upon this literature in various directions.

First, we assume dependent hidden Markov chains while preserving tractability
in large-sized panels. Modelling dependence through interaction effects has been
successfully used in many contexts, such as in random fields, graphical models and
MS literature (e.g., see Brémaud, 2013). In this paper, we provide a new general
model for Markov chains interaction based on network theory. See Allen and Babus
(2009) for a review of network models in economics and finance. The interaction
of the chains on a network produces endogenous synchronization effects with time-
varying clustering of the series. This model feature expands upon the literature
that assumes static clustering effects. The tractability is preserved thanks to a linear
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parametrization of the transition probabilities and to the use of networks to represent
the dependence structure. Linear parametrization has several advantages. The first
advantage relates to inference aspects. The multivariate logistic transformation,
widely used in the literature, implies a non-linear transformation of the parameters
which makes the inference task more difficult. In a Bayesian setting, non-linear
parametrization can lead to the poor performance of the Markov Chain Monte Carlo
(MCMC) sampler used for posterior approximation (e.g., see Scott (2011)). Our
model, on the other hand, is not exposed to these inferential issues. The drawback
of linear parametrization concerns the constraints one needs to introduce to the
parameters, but these constraints can be easily handled through the use of standard
prior distributions. The second advantage is that linear parametrization allows us
to provide some of the theoretical properties of the multiple-chain model under a
broader class of interaction mechanisms, including idiosyncratic, local and global
interactions (Föllmer and Horst (2001)).

Secondly, the model allows for multiple interaction effects thanks to the use of
multi-layer networks. The network layers are defined as a set of nodes representing
the unit-specific chains, and a set of edges representing pairs of chains. Each edge
encodes a dependence relationship between panel units (e.g., the US states) and
each layer corresponds to different dependence structures among the chains (e.g.,
the business cycles of the US states). We consider both exogenous layers observed by
the researcher, such as geographical, sectoral and economic proximity of the units,
or endogenously estimated from a set of node- and edge-specific covariates. The
specification of the layers depends on the researcher’s understanding of the economic
and social relationships (e.g., information, trade, labor and financial interactions)
among the economic actors and of their effects on the economic activity. A model
selection procedure could be applied to choose the most relevant layers. Another
feature of our model is the chain interaction mechanism. We assume that the
chains can interact either globally or locally. In particular, a global interaction
effect assesses the importance of common movements in the panel, while a local
one captures the co-movements of a chain with other chains, which are directly, or
indirectly, connected to the layer. The increased data availability allows researchers
to employ multiple-layer networks and calls for the development of new econometric
tools for networks. To the best of our knowledge, this is the first model with Markov
switching processes interacting within a multi-layer network. In this sense, this
study contributes to the recent, and expanding, stream of literature on network
econometrics (e.g. Billio et al. (2012); Ahelegbey et al. (2016); Bianchi et al. (2019);
Diebold and Yilmaz (2014, 2015)).

Another contribution of this paper consists in the proposal of a new efficient
MCMC algorithm for the posterior approximation based on the Metropolis-adjusted
Langevin (MALA) sampling method (Girolami and Calderhead (2011)), which
exploits the information on the gradient of the target distribution. This method
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has been successfully applied to many fields, such as statistics, physics and recently
even in econometrics by Burda and Maheu (2013), Burda (2015) and Virbickaite
et al. (2015).

Finally, we contribute to the study of US regional business cycles. We collect
monthly coincident indices from 50 US states. With respect to previous studies
(see Hamilton and Owyang (2012), Camacho and Leiva-Leon (2014), Leiva-Leon
(2014)), we are able to identify the role of the global and local interaction factors
in the cycle co-movements. Also, we shed light on the role of the exogenous and
endogenous channels of transmission of shocks across the US states and show that
the network interaction effects play a key role in making slowdowns and recessions
deeper and longer, contrary to what is predicted by an aggregate index. We find
evidence that not only direct, but also indirect, network effects contribute to the
spread of recession and expansion across states.

The remainder of the paper is structured into seven sections. Section 2 describes
the panel Markov switching model with interacting chains and the regime switching
transition probabilities. In section 3, we discuss some properties of the proposed
model and present examples of the model outputs. In section 4 we provide the
Bayesian estimation procedure. Section F studies the model in simulation exercises
and section 5 applies it to regional US business cycles. Section 6 concludes.

2 Panel Markov switching with interacting chains

Denote with {yit}, t = 1, . . . , T the i-th time series, i = 1, . . . , n of our panel MS
model with interacting hidden Markov chains (PMS-IC). We assume each series
follows a conditionally linear and Gaussian process with mean and variance driven
by a unit-specific Markov chain sit, t = 1, . . . , T with values in the finite set
{0, . . . , K − 1}.

The measurement equation is written as:

yit =


µi1 + σi1εit, εit

iid∼ N (0, 1) if sit = 0
...

µiK + σiKεit, εit
iid∼ N (0, 1) if sit = K − 1

(1)

where K represents the number of unobserved latent regimes and the symbol IA(X)
is the indicator function, which takes value 1 if X ∈ A and 0 otherwise.

The (K ×K) transition matrix Pit of the i-th chain is time-varying and has l-th
row and k-th column element pit,lk defined as:

pit+1,lk = P (sit+1 = l|sit = k, s−i,t) (2)

which represents the conditional probability that unit i moves to the regime
l ∈ {1, . . . , K} at time t + 1. st = (s1t, s2t, . . . , snt) ∈ S denotes a state vector
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1 0 1 1
1 0 1 1



Figure 1: Illustration of 2-layer networks G = (V,D1, D2), with four nodes in
the vertex set V = {1, 2, 3, 4}. Left: the graphical representation with nodes
(circles), edges (solid lines) and layers (different hyperplanes). The size of a
circle is proportional to the node degree, that is the number of incident edges.
Centre: network representation with binary matrices Ar. Right: matrices Wr,q

those elements are the number of walks and cycles of length q = 2 between pairs of
nodes in a layer r = 1, 2.

with all chain states at time t, with S = {0, . . . , K − 1}n and s−i,t = {sjt, j =
1, . . . , n; j 6= i} a state vector with the states of all chains but the i-th chain.

2.1 Chains interaction on multi-layer networks

We represent different connectivity channels between units with a multi-layer
network defined by an ordered sequence of sets G = (V,D1, . . . , DN). The vertex
set V = {1, . . . , n} represents the units of the panel, each edge set Dr ⊂ V × V
represents the unit pairs {i, j}, i, j ∈ V , which are connected in the layer r. Each
connectivity layer corresponds to a different shock transmission channel between
panel units and may either be exogenous or endogenous. The connectivity structure
of a layer Dr is encoded by a binary matrix, called adjacency matrix, Ar, with
(i, j)-th entry given by

ar,ij =

{
1 if {i, j} ∈ Dr

0 if {i, j} /∈ Dr

Figure 1 provides an illustration of a 2-layer network with layers of geographical
and economic proximity of panel units (panel a) and the corresponding adjacency
matrices (panel b).

The network representation of the interaction channels allows for either direct or
indirect connections. We denote with Vrq(i) ⊂ V the sets of nodes directly (q = 1)
or indirectly (q > 1) connected to the node i in the layer Dr, i.e. Vq(i) = {j ∈

5



V | ∃ D(i, j) ⊂ Dr} where D(i, j) = ({j0, j1}, {j1, j2}, . . . , {jq−1, jq}, {jq, jq+1}) is the
sequence of connections, i.e. a walk on the graph, joining the unit j0 = i to the
unit jq+1 = j in the layer Dr. If shocks propagate at a higher frequency than the
observation frequency, then the indirect connections do matter. For example, if unit
1 is connected to unit 2 and 2 is connected to 3, and we observe the variables of
interest at a monthly frequency, we can expect that a shock originating from unit 3
and spreading faster than monthly, e.g. at a weekly frequency, will hit unit 1 through
unit 2 in the same month. In our model we define q-th as the order interaction effect
between two nodes if there exists at least one walk of length q joining the two nodes.
In formulas, let Wr,q = (Ar)

q, then i, j ∈ Vq(i) if the (i, j)-th entry of Wr,q > 0. See
panel (c) of Figure 1 for an illustration.

We assume the unit-specific Markov chains interact on a multi-layer network and
propose the following linear parametrization of the transition probability:

pit+1,lk = αplk +
N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmk (st) (3)

where plk ∈ [0, 1] represents the fixed transition probability, mirq,k (st) ∈ [0, 1] the
local interaction factor and mk (st) ∈ [0, 1] the global interaction factor, which is
constant across units. The following constrains exist on the interaction parameters:
0 < α ≤ 1, 0 ≤ βrq < 1, r = 1, . . . , N , q = 1, . . . ,M , 0 ≤ γ < 1 and

α +
∑N

r=1

∑M
q=1 βrq + γ = 1 and on the time-invariant transition probabilities:

pl1 + . . . + plK = 1 ∀i, l are sufficient conditions for the positivity of the transition
probability.

The fixed transition probability plk determines the long-run behavior of the
processes in our PMS-IC (see Section 3) and if the parameter α is equal to 1 then we
obtain a Markov-switching panel model with time-homogeneous transition common
to the panel units.

The local interaction factor mirq,k (st) reflects the connectivity of the unit i in
the layer r and is given by the proportion of neighboring units, i.e. the elements of
Vrq(i), which are in the state k at time t:

mirq,k (st) =
1

|Vrq(i)|
∑

j∈Vrq(i)

I{k}(sjt) (4)

If a unit i has in its neighbor Vrq(i) a high proportion of units in regime k at time
t, then it will have a larger probability of transiting to regime k at time t+ 1. The
local interaction factor with q > 1 is a non-linear term which accounts for shocks
transmission due to indirect connections.

The global interaction factor mk (st) is given by the proportion of chains in
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regime k at time t that is:

mk (st) =
1

n

n∑
j=1

I{k}(sjt) (5)

If a large proportion of units are affected by a global shock at time t, it is highly
likely that the other units, including unit i, will be affected by the shock.

In a macro perspective, our PMS-IC has the potential to analyze the co-
movement of regional business cycles. It does not only help to characterize the
unit-specific cycles but also shows the importance of global and local factors (global
and local interaction), and of the long-term business cycle (fixed transition).

2.2 Endogenous network interaction effects

For the endogenous layers of the multi-layer network, we specify a random network
model with node-specific covariates. Without loss of generality, in the following we
assume the first layer D1 is endogenous and the remaining are exogenous. In the
random layer, the edge existence is given by the Bernoulli variable a1,ij which is
equal to 1 if {i, j} ∈ D1 and 0 otherwise. The edge probability P(a1,ij = 1) = qij
given by

qij =
exp(g(xi,xj)

′ϕ)

1 + exp(g(xi,xj)′ϕ)
(6)

where g(xi,xj) ∈ Rn is the distance function between the n-dimensional feature
vectors xi = (x1i, . . . , xni), which is a map from Rn to Rr, and ϕ ∈ Rr is a parameter
vector. In this model, the ability of a vertex i to attract edges in the network (node
fitness) varies across nodes and is driven by the node-specific feature vector xi and
the fitness parameter ϕ. The larger the value of the l-the element ϕl, the higher the
fitness of the nodes is with respect to the l feature.

Following Holmes and Held (2006) and Hamilton and Owyang (2012), we use
a convenient data augmentation representation of the edge indicator and introduce
the latent variables

ζij = g(xi,xj)
′ϕ+ 2ψijηij, ηij

iid∼ N (0, 1), (7)

ψij
iid∼ f(ψij), f(ψij) = 8

∞∑
j=1

(−1)j+1j2ψ exp(−2j2ψ) (8)

where f(ψij) is the Kolmogorov-Smirnov distribution. The probability in Eq. (6)
corresponds to the distribution of the random variable aij = I(ζij > 0).
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3 Properties of the model

3.1 Theoretical properties

The use of linear parametrization for the time-varying transition probabilities allows
us to study the convergence of the ergodic probabilities. Let S = {0, 1, . . . , K − 1}n
be the finite set of all configurations of st = (sit)1≤i≤n with sit ∈ {0, 1, . . . , K − 1},
i = 1, . . . , n. The following result provides a characterization of the macroscopic
dynamic of the set of Markov chains for diverging n and shows that the interacting
transition kernel defined in equation (3) is generating a deterministic sequence of
empirical averages. These quantities can be used to find the limiting behavior of the
set of chains as t tends to infinity and to give an interpretation of the parameters
of the transition probabilities.

The relationship between the local interactions factor and the global one is
summarized by the following. Let us define the empirical averages:

m (st) = (m0 (st) , . . . ,mK−1 (st))
′

and the proportion of regime in some finite neighborhood Vrq(i) of i:

mirq (st) = (mirq,0 (st) , . . . ,mirq,K−1 (st))
′

where

mk (st) = lim
n→∞

1

n

n∑
i=1

I{k}(sit), k = 0, 1, . . . , K − 1

mirq,k (st) =
1

|Vrq(i)|
∑

j∈Vrq(i)

I{k}(sjt), k = 0, 1, . . . , K − 1

with sit being a Markov chain with transition probabilities

πi(sit+1 = k|st) = αpsitk +
N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmk (st)

where
∑K−1

k=0 πi(sit+1 = k|st) = 1. Then the sequence of empirical averages of mi (st)
converge to m (st).

The theoretical relationship between the global interaction factor and the fixed
transition probability matrix is given in Proposition 3.1.

Proposition 3.1. Let S1 = {st ∈ S|∃mt+1} and Π(·|st) =
∏∞

i=1 πi(·|st) the product
kernel of the population of chains, then

lim
n→∞

1

n

n∑
i=1

I{k}sit+1 = lim
n→∞

1

n

n∑
i=1

πi (sit+1 = k|st) Π(·|st)− a.s., (9)
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the sequence of empirical averages almost surely satisfies the recurrence relation

mk (st+1) = α
K−1∑
j=0

pjkmj (st) + (1− α)mk (st) (10)

and the global interaction process {m (st)}t∈N converges almost surely to the unique
invariant probability of the fixed transition probability matrix

P =

 p01 · · · pK−1,0
...

. . .
...

p0,K−1 · · · pK−1,K−1


Proof. See Appendix A.1.

The convergence of the Markov chain process of the population of time series
with time-varying transition probabilities is present in the following.

Proposition 3.2. The process {st}t∈N converges in law to the unique product kernel

Πm(·|st) =
∞∏
i=1

πmi(·|st)

Proof. See Appendix A.2.

3.2 Numerical illustration

We provide a qualitative description of the synchronization effects of our PMS-IC
model through some simulated examples. Consider a PMS-IC model with n = 50
time series of length T = 5000, one layer (N = 1), only linear interaction effects
(M = 1), and three regimes (K = 3). Figure 2 shows the heat-maps of a realization
of the dynamic panel (50 trajectories of length 5000 each) with weak (α = 0.7,
β11 = 0 and γ = 0.3, top chart) and strong (α = 0.3, β11 = 0 and γ = 0.7, bottom
chart) global interaction effects. For further details on the parameter settings, see
M2 andM3 in Table E.1 of the Supplementary Material. Colors represent the value
of the series, where white, green and red indicate expansion, moderate expansion
and recession regimes, respectively. If two chains are in the same regime, then their
trajectories appear with the same color on the heat-map. In the strong interaction
case, vertical-colored bars suggest that a large proportion of chains in the population
are in the same regime. The results indicate that the level of synchronization
increases with the value of both the global and the local interaction parameters.
Our PMS-IC model allows for various degrees of synchronization and for time-
varying transition probabilities. Also, the convergence of the ergodic averages to
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Figure 2: Endogenous synchronization effects. Heat-map of 50 trajectories (vertical
axis) of 5000 observations each (horizontal axis) for the weak global interaction
modelM2 (α = 0.3, β11 = 0 and γ = 0.7, top plot) and the strong global interaction
model M3 (α = 0.7, β11 = 0 and γ = 0.3, bottom plot). Colors represent the value
of the series, with white, green and red indicating expansion, moderate expansion
and recession regimes, respectively.

the ergodic probabilities is reached at different speeds and is usually faster for
strong global interaction, than for strong local interaction (see Figure E.1-E.5 in
the Supplementary Material).

We study the impact of the local connectivity structure of the networks on
the endogenous synchronization effects and provide a Monte Carlo estimate of
the synchronization level for different values of the local and global interactions
parameters. We use the bivariate concordance index of Harding and Pagan (2002)

ci,j =
1

T

T∑
t=1

I{0}(sit − sjt) (11)

to assess the impact of the local and global parameters on the synchronization of
chains. This index describes the fraction of times that two Markov chains, i and
j, are in the same state. The relationship between the local and global interaction
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Figure 3: Chains synchronization level, measured by c (vertical axis), as a function
of the local interaction parameter β (horizontal axis) for different neighbors size: 4
(blue line), 16 (orange line) and 24 (yellow line) units

parameters and the level of synchronization among the chains can be measured by:

c =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

ci,j (12)

which is in the unit interval. The closer the value of c is to one, the greater the
extent of synchronization within the panel of series.

Three neighborhood systems are designed for a model with only local
interactions. In each model, the neighbors are made up of 4, 16 and 24 units.
The rate of synchronization increases with the size of the neighborhood and the
value of β, as well as γ (different lines in Figure 3).

4 Bayesian inference

4.1 Likelihood function and prior distributions

Let θ = (µ1, . . . ,µK ,σ1, . . . ,σK , vec(P ), vec(Q), α,β, γ,ϕ) be the vector
of parameters with µl = (µ1l, . . . , µnl), σl = (σ1l, . . . , σnl), Q =
(q11, . . . , q1n, . . . , qn1, . . . , qnn) and β = (β11, . . . , β1M , . . . , βN1, . . . , βNM). Let us
define the latent state variable ξk,it = I{k}(sit), which takes value 1 if the state
of the chain sit is k and 0 otherwise, then the model in Eq. 1 can be written as

yit =
K∑
k=1

ξk,itµik + εit

K∑
k=1

ξk,itσik, εit
iid∼ N (0, 1) (13)
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Let y = (y1, . . . , yT ) be the collection of all observations, and Ψ =
(ψ11, . . . , ψ1n, . . . , ψn1, . . . , ψnn) and Z = (ζ11, . . . , ζ1n, . . . , ζn1, . . . , ζnn) the two
matrices of latent variables for the latent network G with connectivity structure given
by the adjacency matrix A = (a11, . . . , a1n, . . . , an1, . . . , ann). Let Ξ = (ξ1, . . . , ξT )
the K × nT matrix of latent variables for the panel of hidden Markov chains,
where Ξt = (ξ1t, . . . , ξnt) is the K × n matrix of latent variables at time t with
ξit = (ξ1,it, . . . , ξK,it) where ξk,it = Ik(sit).

By using the sequential factorization of the likelihood, the complete likelihood
of the PMS-IC model is:

L(y,Ξ, A, Z,Ψ | θ) = f(y|Ξ,θ)f(Ξ|A,θ)f(A|Z)f(Z|Ψ, θ)f(Ψ) (14)

where the factors in the complete-data likelihood are:

f(y|Ξ,θ) =
T∏
t=1

n∏
i=1

f(yit|ξit,θ)

f(Ξ|A,θ) =
n∏
t=1

n∏
i=1

f(ξit|Ξt−1, A,θ)

f(A|Z) =
n∏
i=1

n∏
j=1

I(ζij > 0)aij(1− I(ζij > 0))1−aij

f(Z|Ψ,θ) =
n∏
i=1

n∏
j=1

(2πλij)
− 1

2 exp

{
− 1

2λij
(ζij − g(xi,xj)ϕ)2

}

f(Ψ) =
n∏
i=1

n∏
j=1

f(ψij)

where λij = 4ψ2
ij and f(ψij) is give in Eq. (8) and

f(yit|Ξ,θ) =
K∏
l=1

(2πσ2
il)
−
ξl,it
2 exp

{
− ξl,it

2σ2
il

(yit − µil)2

}

f(ξit|Ξt−1, A) =
K∏
l=1

K∏
k=1

p
ξl,itξk,it−1

it,lk

pit,lk = (αplk +
N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmt,k)
ξl,itξk,it−1 .

In order to complete the specification of the Bayesian model, we discuss the prior
choice. We consider conjugate prior distributions based on proper distributions. We
assume independent priors for the unit-specific and the common parameters:

µil ∼ N (mil, s
2
il) (15)
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σ2
il ∼ IG(ail, bil) (16)

(pl1, . . . , plK) ∼ Dir(v1, . . . , vK) (17)

(α,β′, γ) ∼ Dir(r1, r
′
1+NM , r2+NM) (18)

ϕ ∼ N (m, S) (19)

with l = 1, . . . , K and i = 1, . . . , n, where IG(a, b) denote the inverse
gamma distribution with shape and rate parameters a and b, respectively
and Dir(d1, . . . , dK) the K dimensional Dirichlet distribution with parameters:
d1, . . . , dK .

One of the main problems of Bayesian analysis using Markov switching processes
is the non-identifiability of the parameters. That is, the posterior distributions of
the parameters of resulting Markov switching model is invariant to permutations
in the labelling of the parameters, if this latter follows exchangeable priors.
Consequently, the marginal posterior distributions for the parameters are identical
for each switching component and the symmetry of the posterior distributions
affect the MCMC simulation and the interpretation of the labels switch. For more
details about the effects that label switching and non-identification have on the
results of a MCMC-based Bayesian inference, see, among others, Celeux (1998),
Frühwirth-Schnatter (2001), and Frühwirth-Schnatter (2006). One way to address
the label switching problem is to consider the permutation sampler proposed by
Frühwirth-Schnatter (2001) under some specific conditions. Another alternative
is to impose identification constraints on the parameters. This practice is widely
used in macroeconomics because it is naturally related to the interpretation of the
different states (e.g. recession and expansion) of the business cycle. We follow the
latter approach and impose the identification restrictions µi1 ≤ µi2 ≤, . . . ,≤ µiK .

4.2 Posterior simulation

The joint posterior distribution is

π(θ,Ξ, A, Z,Ψ | y) ∝ L(y,Ξ, A, Z,Ψ | θ)π(θ) (20)

where π(θ) is the joint prior distribution defined in Eq. (15)-(19). Since the posterior
is not tractable, we approximate the posterior quantities of interest by applying a
Monte Carlo method. We develop a Gibbs sampling algorithm based on the full
conditional posterior distributions. The derivation and the details of the conditional
distributions are provided in Appendix B. The model in equation (1) is estimated
by adapting the multi-move Gibbs-sampling procedure for the Bayesian estimation
of Markov switching models presented in Frühwirth-Schnatter (2006). At the d-th
iteration, the Gibbs sampler iterates over the following steps for the parameters.

1. Draw (α,β′, γ)(d), from f(α,β′, γ | y,Ξ(d−1), A(d−1), P (d−1)).
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2. Draw (pl1, . . . , plK)(d) from f(pl1, . . . , plK | y,Ξ(d−1), A(d−1), (α, β, γ)(d)), l =
1, . . . , K.

3. Draw µ
(d)
il ,from f(µil | y,Ξ(d−1), σ

(d−1)
il ), i = 1, . . . , n, l = 1, . . . , K.

4. Draw σ
(d)
il , from f(σil | y,Ξ(d−1), µ

(d)
il ) i = 1, . . . , n, l = 1, . . . , K.

5. Draw ϕ(d), from f(ϕ | Z(d−1),Ψ(d−1))

We exploit the following factorization for the joint distribution of the latent variables
and the network

f(A,Z,Ψ | θ,Ξ) ∝ f(Ψ | Z,A,θ,Ξ)

∫
f(Z,Ψ | A,θ,Ξ)dΨ

∫ ∫
f(A,Z,Ψ | θ,Ξ)dZdΨ

∝ f(Ψ | Z,A,θ)f(Z | A,θ)f(A | Ξ,θ) ∝ f(Ψ | Z,θ)f(Z | A,θ)f(A | Ξ,θ)

and use a collapsed Gibbs step

6. Draw A(d), from f(A | Ξ(d−1),ϕ(d))

7. Draw Z(d), from f(Z | A(d),θ(d))

8. Draw Ψ(d), from f(Ψ | Z(d),ϕ(d)).

In the last step of the Gibbs, the switching indicator variables are sampled

9. Draw Ξ
(d)
i,1 , . . . ,Ξ

(d)
i,T from f(Ξi,1, . . . ,Ξi,T | y, A(d),θ(d)), i = 1, . . . , n .

Regarding the sampling methods, the standard sampler based on independent
proposal distributions poorly estimates the parameter (α, β, γ). A straightforward
implementation of the Metropolis-Hastings (MH) algorithm with the prior
distribution applied as proposal distribution becomes inefficient, resulting in
a high rate of acceptance, followed by poor mixing of the chain. Thus,
we apply a Metropolis-adjusted Langevin (MALA) sampling algorithm as
an efficient method for solving the issues described above. We simulate
(α,β′, γ) from f (α,β′, γ|Y,Ξ, A, P ), where the prior is chosen to be Dirichlet
Dir(ϕ1,ϕ

′
1+NM , ϕ2+MN). Since by definition (α, β, γ) ∈ [0; 1]3; when dealing with

random walk proposals, we need to use the transformation of α, βrq, ∀ r, q and γ to
the real line, which introduces a Jacobian factor to the acceptance probability of the
MALA. We assume α = g(α̃), β = g(β̃rq), γ = g(γ̃), where g(x) = 1/(1 + exp(−x))
is the logistic transformation. For the MALA, we need the partial derivatives
of the complete log-likelihood with respect to the transformed parameters. A
similar strategy is applied to get samples from the full conditional distribution of
(pl1, . . . , plK), l = 1, . . . , K. See Appendix D.
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The proposal distribution at the n-th iteration of the MALA is given by the
following equation

ω∗ = ω(n) +
ε2

2
M∇ωl

(
ω(n)

)
+ εM

1
2 z(n) (21)

where ω = (α̃, β̃′, γ̃)′, l(ω) = log f(ω|y,Ξ, A, P ) is the log-full conditional, ε is
the integration step and z ∼ N (0, 1). M is a preconditioning matrix which
helps to circumvent issues that appear when the elements of ω have very different
scales, or if they are strongly correlated.

√
M can be obtained via Cholesky

decomposition, such that M = UU ′ and
√
M = U . The convergence to stationary

distribution p(ω) is ensured by employing a Metropolis acceptance step. The
proposal distribution q(ω∗|ωn) is N (µ(ωn, ε), ε2I) with µ(ωn, ε) = ωn + ε2

2
∇ωp (ωn)

and acceptance probability given by min{1, p(ω∗)q(ωn|ω∗)/p(ωn)q(ω∗|ωn)}. The
choice of the preconditioning matrix does not follow any systematic and principled
manner. For instance, Christensen et al. (2005) showed that a global level of
preconditioning can be inappropriate for the transient phase of the Markov process.

The full conditional distributions of µil, ϕ, and σil are normal and inverse gamma
and can be simulated exactly.

We sample from the full conditional distribution of the adjacency matrix A of
the latent network G by MH, which explores all configurations of the binary entries
of A. At the second step of the collapsed Gibbs, we sample from f(Z,Ψ|A,θ) by
adapting the sampler of Holmes and Held (2006) and Hamilton and Owyang (2012).

Regarding the allocation variables ξi,t i = 1, . . . , n and t = 1, . . . , T , of the
hidden Markov chain process, multi-move sampling cannot be directly implemented
since the full conditional posterior distribution of the unit-specific allocation variable
depends on the other-country allocations. We apply an efficient MH procedure
developed in Billio et al. (2016) for a panel of interacting chains, where the
candidates of the allocation variables are generated by forward filtering backward
sampling (FFBS). We check the effectiveness of the sampling procedure on simulated
data (See Appendix F).

5 US states coincident indices

We apply our model to business cycle of US states and network of states . Not all US
states are identical and, for example, the US financial crisis has shown that some
states were heavily affected by the crisis, e.g. Michigan, while other states were
essentially unaffected, such as Texas, which benefited from high oil prices in 2009
and 2010. Furthermore, the US labor force is often considered to be mobile and keen
to move from one region to another when economic situations differ across states.
This may strengthen the regional effect by creating a network of states that attract
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population and other states that lose population. We believe that our model is
very well suited to investigating such mechanisms and deriving state and US global
country cycles.

We work with the US-state monthly coincident indices datasets produced by
the Federal Reserve Bank of Philadelphia (FED), see Crone and Clayton-Matthews
(2005). The database covers 50 states in the US and our sample dates from October
1979 to June 2010. An index of business cycle diffusion is available for each state. A
global US index is also constructed. The state-level diffusion indices are constructed
on the scale -100 to 100, where a negative number is related to the spread of a
national recession and a positive number to national expansion. Owyang et al.
(2005) apply a Bayesian univariate independent Markov switching model to the
same dataset.1

We study the importance of the local interactions across the US states by
specifying three connectivity settings. The first setting considers the network
generated by contiguous states (geographical network). The second setting considers
four statistical US regions defined by the United States Census Bureau: the West,
the Midwest, the South and the North-east (economic network). We follow Bernile
et al. (2017), Bernile et al. (2015) and Garcia and Norli (2012) and use firm-level
information based on the 10-K filings on the Securities and Exchange Commission’s
EDGAR system to identify economic connections among US states.2 The final
setting estimates a network (endogenous network) driven by the same variables of
Hamilton and Owyang (2012), namely the share of total state employment accounted
for by small firms (x1i in Eq. (6)), manufacturing employment share (x2i), financial
activities employment share (x3i), and barrels of oil produced per 100 dollars of
state GDP (x4i).

The three networks are used in the local-interaction of three types of model
specifications: single-layer with first-order interaction effects (MGEO

11 ,MECO
11 ,

MEND
11 models), single-layer with up to the second-order interaction effects

(MGEO
12 ,MECO

12 , MEND
12 models), and multi-layer with first-order interaction

effects (MGEO,ECO
11 , MEND,GEO

11 , MEND,ECO
11 models). In addition, we include a

specification with only global interactions, which ignores contagion effects between

1More information and data are available at https:

//philadelphiafed.org/research-and-data/regional-economy/indexes/coincident.
2The federal securities laws require companies issuing publicly traded securities to disclose

information on an ongoing basis. Notably, Section 13 and 15(d) of the Securities Exchange Act of
1934 requires companies with more than 10 million dollars in assets and whose securities are held
by more than 500 owners to file an annual report (Form 10-K) providing a comprehensive overview
of the company’s business and financial condition. As in Bernile et al. (2017), we do not make
explicit assumptions about the nature of the economic connections but rather count the number
of times a US state is cited in items 1, 2, 6 and 7 of the 10-K filings. Such items are design to
focus on the firm’s economic activities. By comparing information for firms in two different states,
we can derive an economic network between the two states.
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cycles of connected US states (M0 model).
Figure 4, panels a), b) and c), provides the direct (left) and indirect (right)

connectivity structure of the three networks. The geographic and endogenous
networks are connected graphs, whereas the economic one is not and presents three
connected components. In a connected graph, it is possible to get from every vertex
to every other vertex through a series of edges (path). This implies that recessions in
a state can propagate to the entire economy only in the geographic and endogenous
networks.

The average number of connections (average degree) in the direct geographical
and economic networks are 4.36 and 13.12, respectively; on the contrary, the
endogenous network is more dense with an average degree of 25.12. Thus, the
propagation of recession and expansion is faster in the endogenous network since the
number of direct connections is larger. Nevertheless, the propagation also depends
on indirect connections between states. Thus for low-degree networks, such as
the geographical and economic ones, indirect connections can become relevant in
models, which account for second-order interaction effects (MGEO

12 ,MECO
12 ). The

right column in Fig 4 shows that indirect connectivity differs substantially from the
direct ones for the geographical and economic networks, whereas the difference is
smaller for the endogenous. For example, following degree centrality (see Table G.1
in Appendix G and thicker circles in Fig. 4), the most central nodes are Missouri
(MO) and Tennessee (TN) in the geographical network, and Rhode Island (RI) and
Vermont (VT) in the economic network, where they play a key role in connecting
the West and North-east regions. In the indirect-connection network (right panel),
these central nodes become less central, a new connectivity structure and new most
central nodes appear. Similarly, all states in the West and North-east regions appear
more connected and central and thus more exposed to contagion effects.

The endogenous network has a substantially different structure than the
geographic and economic networks, with several central nodes, such as California
(CA), New Hampshire (NH), Montana (MO), Washington (WA), Rhode Island
(RI) and Utah (UT). This indicates that the exogenous variables proposed by
Hamilton and Owyang (2012) can be used in our framework to capture some relevant
contagion channels between US states. As regards the effects of the covariates on
the network formation, negative coefficients (small firms employment share (-1.371),
manufacturing employment share (-1.828), financial activities employment share (-
1.221)) imply that states with similar features and those that are contiguous are
more connected. The positive coefficient of the oil production (0.532) implies that
oil-producing states, which have different economic features and are not contiguous
in the geographical network, are closer in the endogenous network.

The results in Table 1 indicate that a single-layer specification model with
economic and endogenous proximity presents the highest marginal log-likelihoods;
models with geographical proximity the second highest, and the model with only
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(a) Geographical connections
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(b) Economic connections
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(c) Endogenous connections

Figure 4: Geographical (a), economic (b) and endogenous (c) networks of direct
(left) and 2-step indirect (right) connections. In the network plots: lines indicate
connections between pairs of nodes (colored circles); thicker circles and large labels
mean that a node has a larger number of connections; colors indicate USCB
geographical regions with light blue for North-east, orange for Midwest, pink for
South, and green for West. Node labels represent states labels.
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global interaction gives the lowest marginal likelihood. Among the multi-layer
specifications, the best model in terms of marginal log-likelihood is the PMS-IC
multiple-layer model that includes an endogenous layer and an exogenous economic
layer (MEND,ECO

21 ). There is evidence of substantial contagion effect in both the
endogenous (β̂11 = 0.321) and the exogenous (β̂21 = 0.601) layers. This indicates
that the information on business relations encoded in the economic network are
relevant for explaining contagion, confirming the results obtained with single-layer
first- and second-order interaction (MECO

11 and MECO
12 ). Nevertheless, they are

not enough to explain contagion effects and a latent endogenous layer is needed
to provide additional information about the spread of contagion cross the US
states. The results for the modelMEND,GEO

11 indicate that the geographical network
has a smaller yet still significant impact on contagion when compared with the
endogenous economic network. Another interesting result regards the second-order
effect specification. Comparing the marginal log-likelihood of models MGEO

12 and
MECO

12 with those of models MGEO
11 and MECO

11 , we can conclude that indirect
effects should be accounted for in the specification of network interaction models.
As in the geographical network model with second-order interaction (β̂11 = 0.011
and β̂12 = 0.801), higher order interaction effects may be more relevant than direct
effects in spreading contagion. In conclusion, data support the estimation of locally-
interacting chains which cannot simply proxy with exogenous geographical and
economic proximity perspectives or with direct interaction effects. Our findings
pose challenges to the view that crises can be restricted and limited locally.

We also study the ability of the model to detect the turning points of the
US business cycle. Figure 5 plots the global interaction of recessions of US-state
business cycles obtained from our model together with the diffusion index of the
US national cycle phases published by the Federal Reserve of Philadelphia. We
present two different measures from our model output: i) a recession probability
computed as equal average of the smoothed recession probabilities of all states; ii) a
recession probability computed as equal average of the filtered recession probabilities
of all states. The former indicates how ex-post our model can call recessions; the
latter one can be seen as an ex-ante measure of recessions where probabilities for
time T + 1 are computed at time T (assuming parameters are known). The two
probabilities behave very similarly, with the one based on filtered probabilities just
marginally more volatile. Usually, filtered probabilities vary more than smoothed,
but we remember our indicator is an average of 50 state probabilities. The individual
state probabilities are quite different in several periods, see their distribution in the
bottom panel of Figure 5. This is particularly evident in the middle of the 1980s,
when NBER does not register a recession; however they are more similar when
entering and exiting recessions. On average, our PMS-IC with global and local
interactions of cycles matches better the national recessions given by the NBER, as
the receiver operating characteristic curve (Berge and Jordà, 2011; Aastveit et al.,

20



Figure 5: Top: The diffusion index of the Federal Reserve of Philadelphia (black
dashed, left axis) and the global interaction factor of the model MEND,ECO

21

estimated with the smoothed (red dotted, right axis) and the filtered (black solid,
right axis) expansion probabilities. For all variables, lower values indicate higher
recession probabilities. Gray bars represent the US national recession periods
following the official dating of the National Bureau of Economic Research (NBER).
Middle: Global interaction factor (red dotted) and cross-sectional inter-quantile
ranges, at 90% (dark grey area) and 60% (light grey area), of the US states
filtered probabilities. Bottom: Filtered expansion probabilities under different
network configuration scenarios: baseline (black solid), employment contraction
with mobility restrictions (blue dashed), and job support schemes with mobility
restrictions (red dotted).
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2016) in Figure G.1 in the Supplementary Material G.
Our model allows for us to assess the effects of policy interventions

using connectivity among US states. We illustrate the approach through
two counterfactual exercises by recomputing the expansion probabilities under
alternative network configurations, while keeping all the other parameters
unchanged. The baseline scenario corresponds to the historical recession probability
of the model MEND,ECO

21 , where the average degree of USCB and endogenous
networks are 13.12 and 25.12 respectively.

In the first exercise, we investigate the effects of negative shocks on employment
in small firms, manufacturing and financial activities, and mobility restrictions
across US states, which have become relevant during the COVID-19 pandemic event.
The employment contraction increases the average degree of the endogenous network
to 33.4. Moreover, we design a mobility scenario where US states with high contagion
risk (Connecticut, New Jersey, Massachusetts, Rhode Island, Delaware, Minnesota,
Maryland, Illinois, Nebraska, Iowa) are restricted in lockdown. The risk level is
measured as the per-capita infection rate on June 1, 2020, estimated by combining
documented case reports at the county level. See Figure 1 in Chande et al. (2020).
The mobility restrictions reduce the average degree of the USCB network to 8.08.

In the second scenario, mobility restrictions are still in place, but job support
schemes are implemented and employment does not reduce and therefore the
endogenous network is kept unchanged. The results in the bottom panel in Figure 5
indicate that job support schemes (second scenario) reduce the length and intensity
of the recessions despite the mobility lockdown. On the contrary, recessions can be
longer and deeper when employment is not preserved (first scenario).

6 Conclusion

We propose a new dynamic panel Markov switching model with Markov chains
interacting on a multi-layer network and provide a suitable parametrization and
an efficient Markov Chain Monte Carlo (MCMC) algorithm for the posterior
approximation. Our original model naturally accounts for the endogenous
synchronization of the series, time-varying clustering of the hidden states, and time-
varying transition probabilities. The synchronization effects are induced by the
interaction mechanism. The interaction effects can either be local (i.e. in some
neighborhoods) or global (i.e. among all units in the panel), direct or indirect.
The underlying network can be exogenously given (e.g., geographical or economic
proximity) or endogenously estimated.

We illustrate the usefulness of our PMS-IC model by applying it to the US
regional business cycle. We find evidence of local interaction and of endogenous
network effects which cannot simply proxy with exogenous proximity perspectives
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or with only direct interaction effects. The approach can be used to assess the effects
of policy interventions in a counterfactual analysis. Our methodology is motivated
by and applied to a macroeconomic dataset, however it is general and could be
applied to a wide spectrum of research where endogenous interaction effects are of
interest.
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A Properties of the PMS-IC model

A.1 Proof of Proposition 1

Without loss of generality let assume K = 2. Define wit,1 = sit − µit where
µit = πit (st, 1) and st ∈ S1. Then {wit,1}i≥1 is a sequence of independent random
variables, conditioning on Ft−1 = σ ({su}u≤t−1), such that E(wit,1|Ft−1) = 0 and

V(wit,1|Ft−1) = µit(1 − µit) which satisfies
∞∑
i=1

µit(1−µit)
i2

< ∞. Then by the Strong

Law of Large Numbers it follows that
n∑
i=1

wit,1 converge a.s. to zero for n→∞ (see

Williams (1991), p. 118, Theorem 12.8).
From the previous result we have

mt+1,1 = lim
n→∞

1

n

n∑
i=1

πit (st, 1) (22)

= lim
n→∞

1

n

n∑
i=1

(
sitαp11 + (1− sit)αp01 +

N∑
r=1

M∑
q=1

βrqmirqt,1 + γmt,1

)
= (mt,1αp11 + (1−mt,1)αp01 + (1− α− γ)mt,1 + γmt,1) .

since
∑N

r=1

∑M
q=1 βrqmirqt,1 = mt,1(1− α− γ)/β. The limits of the recursion can be

easily find by setting mt = m∗ and solving the equation

m∗ = α (m∗p11 + (1−m∗)p01) + (1− α)m∗

in m∗.

A.2 Proof of Proposition 2

See Föllmer and Horst (2001).

B Parameter full conditional distributions

1. The full conditional distribution of (α,β, γ) according to the likelihood in
equation (15) and the prior in equation (18) density function:

f
(
α,β, γ|Ξ,θ−(α,β,γ)

)
∝
(
αr1−1βr2−1

1 . . . β
r1+NM−1
NM γr2+NM−1

)
·
K∏
k=1

K∏
l=1

n∏
i=1

∏
t∈Tilk

αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmt,k


where Tilk = {t = 1, . . . , T |ξl,it−1ξk,it = 1}.
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2. The full conditional distribution of the regime dependent intercept µil (where
l = 1, . . . , K and i = 1, . . . , n) according to the likelihood in equation (15) and
the prior in equation (15) has a normal distribution with density function:

f(µil|y,Ξ,θ−µil) ∝ exp

(
− 1

2s2
il

(µil −mil)
2

) T∏
t=1

exp

(
− ξl,it

2σ2
il

(yit − µil)2

)

∝ exp

(
−1

2
µ2
il

(
1

s2
il

+
Til
σ2
il

)
− 2µil

(
mil

s2
il

+
1

σ2
il

∑
t∈Til

yit

))
∝ N (mil, s

2
il)

with mil = s2
il

(
mil
s2il

+ 1
σ2
il

∑
t∈Til

yit

)
and s2

il =
(

1
s2il

+ Til
σ2
il

)−1

.

We defined Til = {t = 1, . . . , T |sit = l}, Til = card(Til). The notation θ−r
indicates that element r is excluded from the vector θ.

3. The full conditional distribution of the regime-specific volatilities σil, l =
1, . . . , K and i = 1, . . . , n, according to the likelihood in equation (15) and the
prior in equation (16) has inverse gamma distribution with density function:

f
(
σ2
il|y,Ξ,θ−σil

)
∝
(

1

σ2
il

)ail+Til+1

exp

(
− 1

σ2
il

(
bil +

∑
t∈Til

(yit − µil)2

))

∝ IG

(
ail + Til, bil +

∑
t∈Til

(yit − µil)2

)

4. The full conditional distribution of each l-th row of the transition matrix
Pl,1:K = (Pl1, . . . , PlK) according to the likelihood in equation (15) and the
prior in equation (17) density function:

f
(
pl,1:K |y,Ξ, θ−(pl,1:K)

)
∝

(
K∏
k=1

p
(vk−1)
lk

)
T∏
t=1

n∏
i=1

K∏
k=1

(
αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmk (st)

)ξk,itξl,it−1

∝

(
K∏
k=1

p
(vk−1)
lk

)
K∏
k=1

n∏
i=1

∏
t∈Tilk

(
αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmk (st)

)

∝
K∏
k=1

(
p

(vk−1)
lk

n∏
i=1

∏
t∈Tilk

(
αplk +

N∑
r=1

M∑
q=1

βrqmirq,k (st) + γmk (st)

))
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5. If we stack vertically the elements of Z and ηij forming the two n2-dimensional
column vectors z and η, then the latent regression can be written as z =
Xϕ + 2Wη, where X is a n2 × 4 matrix and W = diag{vec(Λ)} is a n2-
dimensional diagonal matrix where Λ = ((λ11, . . . , λn1)′, . . . , (λ1n, . . . , λnn)′)
and λij = 4ψ2

ij. The full conditional distribution of the latent regression
parameters ϕ is

f (ϕ|X,Λ, Z) ∝ N
(
m̄, S̄

)
where

m̄ = S̄
(
S−1m+X ′W−1z

)
, S̄ = (S−1 +X ′W−1X)

6. The full conditional distribution of A is

f (A|Ξ,θ) ∝ f(Ξ|A,θ)f(A|θ)

with support set {0, 1}n2
. We sample from f (A|Ξ, Z,θ) by Metropolis-

Hasting. Given two nodes i and j selected at random in the vertex set of
G, if there exists an edge between them, then we propose to remove the
link. Also, we propose to add an edge between i and j if there is no path
linking i to j (we verify this using the reachability matrix, see Wasserman
(1994)). The validity of the proposed MCMC is granted by the fact that (i)
the probability of selecting a node is strictly positive for all nodes, and (ii)
the chain may remain in the current state with positive probability. Together,
these conditions guarantee irreducibility and aperiodicity of the Markov chain.

C Latent variables full conditional distributions

C.1 State allocation variables

In our inference procedure, a multi-move sampling is needed to sample from the
joint posterior distribution f(Ξi,1:T |Ξ−i,1:T , A,y,θ). We apply a forward-filtering
and backward-sampling (FFBS) algorithm. By means of dynamic factorization, the
full conditional distribution of the unit specific hidden state is

P(Ξi,1:T |Ξ−i,1:T , A,y,θ) = P(ξiT |Ξ−i,1:T , A,y,θ)P(Ξi,1:T−1|ξiT ,Ξ−i,1:T , A,y,θ)

= P(ξiT |Ξ−i,1:T , A,y,θ)
T−1∏
t=1

P(ξi,t|Ξi,t+1:T ,Ξ−i,1:T , A,y,θ)

∝ P(ξiT |Ξ−i,1:T , A,y,θ)
T−1∏
t=1

P(ξi,t+1|ξi,t,Ξ−i,t, A)P(ξi,t|Ξ−i,1:T , A,y1:t,θ)
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∝

(
P(ξiT |Ξ−i,1:T , A,y,θ)

T−1∏
t=1

P(ξi,t|Ξ−i,1:t, A,y1:t,θ)

)(
T−1∏
t=1

P(ξi,t+1|ξi,t,Ξ−i,t, A,θ)

)
With this factorization, a Metropolis-Hasting (MH) procedure is needed to take into
account the proportionality factor with the FFBS algorithm as proposal for the unit
specific hidden state. The filtering probability for unit i at time t, t = 1, . . . , T ,
algorithm gives the prediction probability, the one step-ahead forecast density
and the updated probability. Recalling the one-to-one mapping between sit and
ξl,it = Il(sit), the prediction probability of sit is:

P(sit = 1|Ξ−i,1:t,y1:t−1,θ) =

=
K∑
k=1

P(sit = l|sit−1 = k,Ξ−it−1, A)P(si,t−1 = k|Ξ−i,1:t−1, A,y1:t−1,θ)

=
K∑
k=1

Pit−1,klP(si,t−1 = k|Ξ−i,1:t−1, A,y1:t−1,θ) (23)

for l = 1, . . . , K, where Pit−1,lk is the conditional probability that unit i moves from
regime k at time t − 1 to regime l at time t. Ξ−i,t = {ξjt, j = 1, . . . , nj 6= i}. We
initialize for t = 1, P(si,0 = k|y0,θ) to be equal to the ergodic probabilities.
The filtered probability for all l = 1, . . . , K is computed as:

P(sit = l|Ξ−i,1:t, A,y1:t,θ) ∝ P(sit = l|Ξ−i,1:t−1, A,y1:t−1,θ)f(yit|sit = l,y1:t−1,θ)

∝ P(sit = l|Ξ−i,1:t−1, A,y1:t−1,θ)N (µil, σ
2
il) (24)

The smoothing probabilities are obtained recursively and backward in time,
once all the filtered probabilities P(sit = l|Ξ−i,1:t, A,y1:t,θ) for t = 1, . . . , T are
calculated. If t = T , smoothing probability and filtered probability are equal. For
t = T − 1, T − 2, . . . , 1 and for all l = 1, . . . , K the smoothing algorithm proceeds
as follows:

P(sit = l|Ξ−i,1:T , A,y,θ) =
K∑
k=1

P(sit = l, sit+1 = k|Ξ−i,1:T , A,y,θ)

=
K∑
k=1

P(sit = l|sit+1 = k,Ξ−i,1:T , A,y1:t,θ)P(sit+1 = k|Ξ−i,1:T , A,y,θ)

=
K∑
k=1

pit,lkP(sit = l|Ξ−i,1:T , A,y1:t,θ)P(sit+1 = k|Ξ−i,1:T , A,y,θ)∑K
j=1 pit,jkP(sit = j|Ξ−i,1:T , A,y1:t,θ)

(25)
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C.2 Network latent regression variables

1. The full conditional distribution of the latent regression variable Z is

f(ζ11t, . . . , ζnnt|A,θ) ∝
n∏
i=1

n∏
j=1

f(ζij|aij,ϕ) (26)

where f(ζij|aij,ϕ) is a logistic distribution with mean g(xi,xj)
′ϕ and

truncated by ζij ≥ 0 if aij = 1 and by ζij < 0 if aij = 0. Random samples from
this distribution can generated exactly by applying the following transform
ζij = g(xi,xj)

′ϕ − log(u−1
ij − 1) where uij is generated from the following

mixture of two uniforms distributions

uij ∼ U[0,d]I(aij = 0) + Ud,1I(aij = 1) (27)

where U[a,b] denotes the uniform distribution over the interval [a, b] and
d = (1 + exp(g(xi,xj)

′ϕ))−1.

2. The full conditional distribution of the latent regression variable Λ is

f(Λ|Z,θ) ∝
n∏
i=1

n∏
i=1

1√
2πλij

exp{− 1

2λij
(ζij − g(xi,xj)

′ϕ)2}f(λij) (28)

where f(λij) is equal to f(ψij)/(8
√

(λij)) with ψij =
√

(λij)/4. As in
Holmes and Held (2006) we apply an accept/reject sampling method with
a Generalized Inverse Gaussian proposal distribution

λ∗ij ∼ GIG(1/2, 1, r2)

where r2
ij = (ζij − g(xi,xj)

′ϕ)2.

D Metropolis-adjusted Langevin algorithm

The implementation of the Metropolis-adjusted Langevin algorithm (MALA)
requires some necessary expressions which we discuss in this section. We consider the
logistic transformation of the parameters p̃lk, k = 1, . . . , K, α̃, β̃rq and γ̃ to impose
constrains on the parameters space, that is α = g(α̃)/c, βrq = g(β̃rq)/c, γ = g(γ̃)/c,
plk = g(p̃lk)/d where g(x) = exp(x), c = g(α̃) + g(β̃11) + . . . + g(β̃NM) + g(γ̃),
d = g(p̃l1) + . . . + g( ˜plK), and p̃lk, k = 1, . . . , K, α̃, β̃rq, γ̃ take value in the set of
the real numbers.
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The partial derivatives of the complete data log-likelihood with respect to the
new parametrization are:

∂ logL

∂α̃
= g(α̃)(1− g(α̃))

1

c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
plk
pit,lk

(29)

∂ logL

∂β̃
= g(β̃rq)(1− g(β̃rq))

1

c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
mirq,k(st)

pit,lk
(30)

∂ logL

∂γ̃
= g(γ̃)(1− g(γ̃))

1

c2

n∑
i=1

T∑
t=1

K∑
l=1

K∑
k=1

ξl,itξk,it−1
mk(st)

pit,lk
(31)

∂ logL

∂p̃lk
= g(p̃lk)(1− g(p̃lk))

1

d2

n∑
i=1

T∑
t=1

ξl,itξk,it−1
α

pit,lk
(32)

where ξl,it = I{l}(sit).
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Supplementary Material

E Numerical illustrations

We isolate the contribution of the global and local interaction mechanism and specify
six parameter settings which are summarized in Table E.1.

Model label α β γ

M1 (No interaction) 1.00 0.00 0.00
M2 (Weak global interaction) 0.70 0.00 0.30
M3 (Strong global interaction) 0.30 0.00 0.70
M4 (Weak local interaction) 0.70 0.30 0.00
M5 (Strong local interaction) 0.30 0.70 0.00
M6 (Both local and global interaction) 0.50 0.25 0.25

Table E.1: Parameter values of idiosyncratic, global and local interaction
mechanisms for each model Mi, i = 1, . . . , 6.

The difference between the six settings is on the choice of the underlying
parameters α, β and γ. The values of α, β and γ in our settings were carefully
chosen in order to represent a wide variety of possible interaction effects.

In model M1, all the interactions are null and the overall effect is given by the
fixed component of the transition matrix. We assume a weak global interaction
among the Markov chains in M2 and a stronger one in M3. On the other side, we
consider a weak global interaction among the Markov chains in M4 and a stronger
one in M5. The global and local effect are simulated in M6 assuming for them
an equal weight. In all the experiments, we consider a population of 50 time series
following PMS-IC generated with 5000 time horizon. Furthermore, we assume the
following model specification with three regimes (ie, K = 3):

yit =
K∑
k=1

I{k}(sit) [µik + σikεit], εit
i.i.d.∼ N (0, 1)

for i = 1, . . . , 50 and t = 1, . . . , 5000, and the fixed transition matrix:

P =

 0.98 0.02 0.00
0.01 0.98 0.01
0.00 0.02 0.98

 (E.33)

µi1 = −2, µi2 = 0, µi3 = 2, σi1 = .3, σi2 = .05, σi3 = .3. Note that the
ergodic probability associate with P is πi = (.25 .5 .25).
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Figure E.1: Endogenous synchronization effects. Heat-map of 50 trajectories
(vertical axis) of 5000 observations each (horizontal axis), in absence of interaction
(γ = 0, top plot), and in presence of weak (mid plot, γ = 0.3) and strong (bottom
plot, γ = 0.7) global interaction effects. Colors represent the value of the series,
where blue, green and red indicate expansion, moderate expansion and recession
regimes, respectively.
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Figure E.2: Endogenous synchronization effects. Heat-map of 50 trajectories
(vertical axis) of 5000 observations each (horizontal axis), in presence of weak
(β = 0.3, top plot), and strong (mid plot, γ = 0.7) local interaction effects and
of both local and global interaction effects (bottom plot, β = 0.25 and γ = 0.25).
Colors represent the value of the series, where blue, green and red indicate expansion,
moderate expansion and recession regimes, respectively.
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Figure E.3: Endogenous synchronization effects. Empirical (solid lines) and
theoretical (dashed lines) ergodic probabilities, in absence of interaction (γ = 0,
top plot), and in presence of weak (mid plot, γ = 0.3) and strong (bottom plot,
γ = 0.7) global interaction effects. Blue, green and red indicate expansion, moderate
expansion and recession regime probabilities, respectively.
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Figure E.4: Endogenous synchronization effects. Empirical (solid lines) and
theoretical (dashed lines) ergodic probabilities, in presence of weak (β = 0.3, top
plot), and strong (mid plot, γ = 0.7) local interaction effects and of both local
and global interaction effects (bottom plot, β = 0.25 and γ = 0.25). Blue, green
and red indicate expansion, moderate expansion and recession regime probabilities,
respectively.
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(a) No interaction (b) Weak global interactions

(c) Strong global interactions (d) Weak local interactions

(e) Strong local interactions (f) Both local and global interactions

Figure E.5: For each parameter setting, the trajectory of the elements of both fixed
and time varying transition matrices for the first chain in the panel. Colors blue
is for p1t,11; colors green refer p1t,22 and colors red refer to p1t,33. For all plots,
horizontal black lines represent the fixed transition probabilities defined in equation
(E.33).
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F Simulation experiments

We simulate data in the six parameter settings described in section 3.2 (see Table
E.1 for parameter settings) in order to assess the efficiency of the proposed MCMC
algorithm for the posterior approximation. We assess the efficiency using the mean
square error (MSE) for the parameters and the hidden states. MSE is evaluated on

Setting label Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
The unit-specific regression parameters (in total 50 parameters for each regime)

µ.,1 1.323e-02 6.144e-04 0.762e-03 0.866e-03 8.078e-04 6.954e-04
µ.,2 1.977e-02 0.750e-04 0.009e-03 0.009e-03 0.161e-04 0.119e-04
µ.,3 0.357e-02 4.031e-04 0.731e-03 0.632e-03 4.402e-04 9.807e-04
σ.,1 0.740e-03 4.000e-04 0.001e-03 0.313e-03 5.044e-04 0.000e-04
σ.,2 0.120e-03 1.600e-04 0.000e-04 0.005e-03 0.090e-04 0.000e-04
σ.,3 0.109e-03 2.000e-04 0.000e-04 0.757e-03 2.013e-04 0.001e-04

Idiosyncratic, local and global parameters
(α, β, γ) 1.976e-07 3.5535e-04 5.5682e-04 1.540e-02 3.09e-02 4.110e-02

The unit-specific Markov chains (in total 50 parameters for each regime)
Regime 1 5.000e-04 1.200e-03 2.000e-03 1.400e-03 1.600e-03 1.900e-03
Regime 2 1.300e-04 2.200e-03 3.800e-03 2.100e-03 2.100e-03 2.800e-03
Regime 3 6.000e-04 1.600e-03 2.400e-03 1.200e-03 2.200e-03 1.600e-03

Table F.1: Mean square error (MSE) for the parameters estimated using the
proposed MCMC algorithm for the PMS-IC model.

5000 iterations after convergence (1000 draws). Table F.1 reports for each model
the average MSE for the 50 units in our panel.

The first evidence is that the precision of the inference of the unit-specific
regression parameters decreases with the parameters β and γ. The second evidence
is that precision of the inferences of the unit-specific Markov chains increases with
the parameters β and γ.
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G Additional empirical results

State Geographical Degree Degree Eigencentrality Eigencentrality
Region Geo Prox USCB Net Geo Prox USCB Net

Alabama South 4 16 0.31 1.00
Alaska West 1 13 0.03 0.43
Arizona West 5 13 0.49 0.43
Arkansas South 6 16 0.65 1.00
California West 4 13 0.23 0.43
Colorado West 7 8 0.80 0.16
Connecticut NorthEast 3 13 0.10 0.43
Delaware South 3 16 0.17 1.00
Florida South 2 16 0.13 1.00
Georgia South 5 16 0.33 1.00
Hawaii West 1 13 0.05 0.43
Idaho West 6 13 0.47 0.43
Illinois MidWest 5 11 0.57 0.18
Indiana MidWest 4 11 0.37 0.18
Iowa MidWest 6 11 0.65 0.18
Kansas MidWest 4 11 0.59 0.18
Kentucky South 7 16 0.76 1.00
Louisiana South 3 16 0.26 1.00
Maine NorthEast 1 8 0.02 0.16
Maryland South 4 16 0.29 1.00
Massachusetts NorthEast 5 8 0.14 0.16
Michigan MidWest 3 11 0.21 0.18
Minnesota MidWest 4 11 0.33 0.18
Mississippi South 4 16 0.38 1.00
Missouri MidWest 8 11 1.00 0.18
Montana West 4 13 0.36 0.43
Nebraska MidWest 6 11 0.77 0.18
Nevada West 5 13 0.40 0.43
New Hampshire NorthEast 3 8 0.07 0.16
New Jersey NorthEast 3 8 0.16 0.16
New Mexico West 5 8 0.55 0.16
New York NorthEast 5 13 0.20 0.43
North Carolina South 4 16 0.33 1.00
North Dakota MidWest 3 11 0.24 0.18
Ohio MidWest 5 11 0.41 0.18
Oklahoma South 6 16 0.72 1.00
Oregon West 4 13 0.25 0.43
Pennsylvania NorthEast 6 8 0.35 0.16
Rhode Island NorthEast 2 20 0.06 0.52
South Carolina South 2 16 0.13 1.00
South Dakota MidWest 6 11 0.56 0.18
Tennessee South 8 16 0.79 1.00
Texas South 4 16 0.40 1.00
Utah West 6 13 0.63 0.43
Vermont NorthEast 3 20 0.11 0.52
Virginia South 5 16 0.50 1.00
Washington West 3 16 0.15 1.00
West Virginia South 4 16 0.33 1.00
Wisconsin MidWest 5 13 0.45 0.43
Wyoming West 6 11 0.66 0.18

Table G.1: Statistics, including degree and eigen centrality, for each node of the
geographical proximity network and USCB network. Geographical regions in which
each State is classified are also provided.
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State µi1 Bayesian CI µi2 Bayesian CI σi1 Bayesian CI σi2 Bayesian CI
Alabama -0.153 (-0.191, -0.115) 0.345 (0.330, 0.360) 0.247 (0.228, 0.266) 0.147 (0.140, 0.154)
Alaska -1.032 (-1.125, -0.942) 0.234 (0.201, 0.266) 0.260 (0.210, 0.317) 0.367 (0.350, 0.383)
Arizona -0.067 (-0.115, -0.016) 0.629 (0.600, 0.659) 0.356 (0.333, 0.380) 0.235 (0.221, 0.250)
Arkansas -0.068 (-0.095, -0.040) 0.356 (0.342, 0.371) 0.187 (0.173, 0.201) 0.134 (0.127, 0.140)
California 0.002 (-0.024, 0.027) 0.380 (0.369, 0.391) 0.184 (0.172, 0.197) 0.095 (0.090, 0.101)
Colorado -0.095 (-0.134, -0.055) 0.425 (0.410, 0.442) 0.230 (0.213, 0.248) 0.143 (0.135, 0.151)
Connecticut -0.111 (-0.139, -0.083) 0.349 (0.333, 0.367) 0.182 (0.170, 0.196) 0.150 (0.142, 0.159)
Delaware -0.084 (-0.113, -0.051) 0.409 (0.390, 0.429) 0.221 (0.206, 0.237) 0.176 (0.167, 0.186)
Florida -0.001 (-0.057, 0.059) 0.425 (0.413, 0.438) 0.396 (0.367, 0.426) 0.116 (0.110, 0.123)
Georgia -0.108 (-0.150, -0.067) 0.453 (0.432, 0.474) 0.263 (0.244, 0.284) 0.196 (0.186, 0.207)
Hawaii -0.072 (-0.101, -0.044) 0.416 (0.386, 0.443) 0.211 (0.199, 0.223) 0.163 (0.150, 0.177)
Idaho -0.216 (-0.290, -0.152) 0.526 (0.507, 0.543) 0.410 (0.381, 0.442) 0.144 (0.135, 0.155)
Illinois -0.230 (-0.267, -0.193) 0.334 (0.316, 0.350) 0.251 (0.232, 0.271) 0.149 (0.141, 0.157)
Indiana -0.410 (-0.477, -0.346) 0.359 (0.338, 0.379) 0.414 (0.380, 0.449) 0.193 (0.184, 0.203)
Iowa -0.199 (-0.244, -0.153) 0.331 (0.314, 0.346) 0.295 (0.274, 0.316) 0.150 (0.142, 0.158)
Kansas -0.280 (-0.347, -0.208) 0.306 (0.283, 0.329) 0.303 (0.274, 0.332) 0.198 (0.187, 0.209)
Kentucky -0.255 (-0.303, -0.209) 0.344 (0.325, 0.361) 0.303 (0.280, 0.329) 0.174 (0.165, 0.183)
Louisiana -0.483 (-0.585, -0.387) 0.280 (0.249, 0.308) 0.373 (0.336, 0.411) 0.235 (0.220, 0.251)
Maine -0.209 (-0.255, -0.162) 0.509 (0.475, 0.544) 0.373 (0.351, 0.396) 0.293 (0.275, 0.313)
Maryland -0.160 (-0.198, -0.123) 0.378 (0.356, 0.399) 0.223 (0.204, 0.241) 0.191 (0.180, 0.201)
Massachusetts -0.158 (-0.196, -0.119) 0.379 (0.360, 0.398) 0.224 (0.206, 0.241) 0.171 (0.162, 0.182)
Michigan -0.651 (-0.762, -0.539) 0.427 (0.392, 0.462) 0.714 (0.661, 0.772) 0.346 (0.327, 0.366)
Minnesota -0.048 (-0.076, -0.018) 0.359 (0.346, 0.373) 0.204 (0.189, 0.220) 0.127 (0.120, 0.134)
Mississippi -0.223 (-0.261, -0.190) 0.352 (0.330, 0.374) 0.209 (0.194, 0.225) 0.191 (0.181, 0.202)
Missouri -0.171 (-0.205, -0.138) 0.325 (0.307, 0.343) 0.216 (0.201, 0.232) 0.160 (0.151, 0.168)
Montana -0.373 (-0.421, -0.319) 0.378 (0.356, 0.401) 0.338 (0.314, 0.365) 0.212 (0.201, 0.224)
Nebraska -0.085 (-0.118, -0.054) 0.335 (0.320, 0.350) 0.198 (0.183, 0.214) 0.140 (0.133, 0.147)
Nevada -0.294 (-0.372, -0.211) 0.634 (0.611, 0.656) 0.515 (0.474, 0.553) 0.204 (0.193, 0.216)
New Hampshire -0.079 (-0.132 , -0.028) 0.484 (0.460 , 0.508) 0.277 (0.256 , 0.299) 0.205 (0.194 , 0.218)
New Jersey -0.093 (-0.123 , -0.064) 0.347 (0.331 , 0.365) 0.216 (0.200 , 0.232) 0.156 (0.147 , 0.164)
New Mexico -0.083 (-0.140 , -0.018) 0.351 (0.333 , 0.371) 0.243 (0.221 , 0.265) 0.155 (0.147 , 0.163)
New York -0.100 (-0.131 , -0.069) 0.270 (0.259 , 0.281) 0.186 (0.172 , 0.201) 0.100 (0.095 , 0.106)
North Carolina -0.122 (-0.159 , -0.084) 0.421 (0.406 , 0.437) 0.250 (0.232 , 0.271) 0.145 (0.137 , 0.153)
North Dakota -0.040 (-0.066 , -0.015) 0.291 (0.278 , 0.303) 0.148 (0.137 , 0.161) 0.119 (0.114 , 0.126)
Ohio -0.376 (-0.491 , -0.265) 0.297 (0.275 , 0.319) 0.688 (0.634 , 0.749) 0.206 (0.196 , 0.217)
Oklahoma -0.352 (-0.404 , -0.300) 0.308 (0.286 , 0.329) 0.291 (0.265 , 0.319) 0.213 (0.202 , 0.225)
Oregon -0.188 (-0.272 , -0.107) 0.536 (0.510 , 0.561) 0.465 (0.432 , 0.503) 0.146 (0.130 , 0.162)
Pennsylvania -0.166 (-0.204 , -0.130) 0.304 (0.288 , 0.320 0.248 (0.230 , 0.266) 0.149 (0.140 , 0.158
Rhode Island -0.368 (-0.422 , -0.312) 0.356 (0.333 , 0.382) 0.308 0.282 , 0.336) 0.225 (0.212 , 0.236)
South Carolina -0.219 (-0.263 , -0.171) 0.417 (0.396 , 0.438) 0.293 (0.270 , 0.315) 0.202 (0.192 , 0.213)
South Dakota -0.060 (-0.090 , -0.027) 0.382 (0.367 , 0.396) 0.197 (0.181 , 0.213) 0.135 (0.128 , 0.142)
Tennessee -0.123 (-0.177 , -0.074) 0.362 (0.345 0.379) 0.243 (0.222 , 0.264) 0.137 (0.128 0.145)
Texas -0.111 (-0.147 , -0.073) 0.406 (0.392 , 0.420) 0.216 (0.198 , 0.234) 0.134 (0.127 , 0.141)
Utah 0.001 (-0.030 , 0.032) 0.466 (0.453 , 0.480) 0.230 (0.214 , 0.245) 0.126 (0.119 , 0.133)
Vermont -0.146 (-0.195 , -0.095) 0.481 (0.452 , 0.510) 0.335 (0.312 , 0.358) 0.243 (0.229 , 0.258)
Virginia -0.081 (-0.106 , -0.054) 0.410 (0.394 , 0.426) 0.176 (0.163 , 0.191) 0.146 (0.137 , 0.154)
Washington -0.132 (-0.171 , -0.092) 0.355 (0.341 , 0.370) 0.224 (0.205 , 0.243) 0.137 (0.130 , 0.144)
West Virginia -0.186 (-0.231 , -0.139) 0.336 (0.320 , 0.353) 0.290 (0.267 , 0.314) 0.150 (0.143 , 0.158)
Wisconsin -0.680 (-0.885 , -0.474) 0.396 (0.361 , 0.432) 1.100 (0.998 , 1.201) 0.325 (0.303 , 0.347)
Wyoming -0.770 (-1.004 , -0.532) 0.366 (0.344 , 0.386) 0.989 (0.878 , 1.108) 0.213 (0.199 , 0.226)

Table G.2: PMS-IC estimations coefficient for the US-States coincident indices.

Following Berge and Jordà (2011) and Aastveit et al. (2016), we compute the receiver
operating characteristic (ROC) to evaluate the accuracy of the filtered probabilities and the
diffusion index to predict the NBER phases. We compare the PMS-IC with endogenous
network filtered probabilities to a transformation of the diffusion index of the Federal
Reserve of Philadelphia based on a normal CDF. Let dt be the diffusion index at time t,
the probability is computed as Φ((dt − µ̂)/σ̂), where µ and σ are the empirical mean and
standard deviation of the index dt and Φ() is the of a normal distribution. The results
can be summarized by calculating the area under the ROC curve. Right panel in Fig.
G.1 indicates that our PMS-IC with global and local interactions of cycles better matches
the national recessions given by the NBER (higher areas). The national diffusion index
also captures the same downturn points, however, our model shows that the degree of
synchronization of the US states cycles seems to call deeper and longer slowdowns and
recessions than the FED diffusion index. Left panel in Fig. G.1 confirms substantial
discrepancy across states.
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Figure G.1: Receiver operating characteristic: false positive rate (horizontal axis)
versus true positive rate (vertical axis). Results given by the PMS-IC with
endogenous network filtered probabilities (right panel, blue solid line), the diffusion
index (right panel, red dashed line), and the country-specific filtered probabilities
(left plot, gray dashed lines).
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