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Abstract

In this paper I describe several updates to xtdcce2 (Ditzen, 2018).
First I explain how to estimate long run effects in models with cross-
sectional dependence. Three methods to estimate the long run effects are
reviewed and their implementation into Stata using xtdcce2 discussed.
Two of the estimation methods build on Chudik et al. (2016); the CS-DL
and the CS-ARDL estimator. As a third alternative I review an error
correction model in the presence of cross-sectional dependence. Second, I
explain how to estimate the exponent of cross-sectional dependence using
xtcse2 following Bailey et al. (2016, 2019).
Keywords: xtdcce2, xtcse2, xtcd2, parameter heterogeneity, dynamic pan-
els, cross section dependence, common correlated effects, pooled mean-
group estimator, mean-group estimator, error correction model, ardl, long
run coefficients

1 Introduction

Estimation of long run relationships is important in empirical applications of
economic and in particular macroeconomic models. Long run relationships de-
scribe how one or more variables react to changes in the steady state. An
example would be the relationships between macroeconomic variables such as
GDP and inflation. Another would be the effects of investments, exchange rates,
education or technological progress on economic growth.

With pure time series data the autoregressive distributed lag (ARDL) model
is widely used to estimate long run relationships. ARDL models estimate the
short run coefficients and then back out the long run coefficients. They were
implemented by the community-contributed ardl command in Stata (Kripfganz
and Schneider, 2018). A related model is the error correction model. The model
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consists of two terms, one term captures the short run deviations from equilib-
rium and the other the long run movements (Engle and Granger, 1987). Both
models can be applied to panel data (Pesaran and Smith, 1995; Pesaran et al.,
1999). Panel data models add an extra layer of dimension compared to time
series models. Time series models cover one panel unit and slope heterogeneity
across units is not an issue. Panel models include many panel units and long
and/or short run coefficients can vary across those. A popular method is the
pooled mean group (PMG) estimator, which assume heterogeneous short run
and homogeneous long run effects in a panel error correction model (Pesaran
et al., 1999). Blackburne and Frank (2007) implemented this method into Stata
with the community-contributed command xtpmg.

The estimation of unit specific coefficients require datasets with a large num-
ber of observations across time periods and cross-sectional units. Such datasets
often inhibit cross-sectional dependence. It implies that cross-sectional units
depend on each other, for instance by sharing a common factor. If this depen-
dence is ignored, estimation results can be biased and inconsistent. Therefore
the extent of cross-sectional dependence needs to be understood and the es-
timation method chosen accordingly. The literature proposes two methods to
identify cross-sectional dependence. The first is to estimate the strength of
the dependence (Bailey et al., 2016), the other is to test for cross-sectional de-
pendence (Pesaran, 2015). The Stata community-contributed command xtcd2

(Ditzen, 2018) tests for cross-sectional dependence. This paper introduces the
first method, the estimation of the exponent of cross-sectional dependence using
xtcse2.

After establishing the existence of strong cross-sectional dependence, it can
be approximated or controlled for by either principle components (Bai and Ng,
2002; Bai, 2009) or by adding cross-sectional averages (Pesaran, 2006), for a com-
parison see Westerlund and Urbain (2015). Due to its simplicity the approach
using cross-sectional averages is very popular and started its own literature, Ev-
eraert and De Groote (2016); Chudik et al. (2011); Chudik and Pesaran (2015a)
provide overviews. The estimation method, called the common correlated ef-
fects (CCE) estimator, applies to static- (Pesaran, 2006) and dynamic panel
models (Chudik and Pesaran, 2015b; Karabiyik et al., 2017), pooled- (Kara-
biyik et al., 2020) and mean group estimators (Chudik and Pesaran, 2019). The
idea of the estimator is to add cross-sectional averages of the independent and
dependent variables which approximate the cross-sectional dependence. This
estimator was implemented into Stata in the static version by the community
contributed command xtmg (Eberhardt, 2012) and in the dynamic version by
xtdcce2 (Ditzen, 2018).

Neither of the commands were able to estimate long run relationships di-
rectly. In this paper I introduce an extended version of xtdcce2 which allows
the estimation of the long run coefficients.1 The estimation method is based on
Chudik et al. (2016) and an augmented error correction model.

1The estimation of long run coefficients is possible with xtdcce2 version 1.33 and later.
This paper refers to version 2.0 or later. See the author’s webpage www.jan.ditzen.net for
updates.
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The remainder of the paper is structured as follows. The next section in-
troduces the panel model, cross-sectional dependence and the CCE estimator.
Then three different methods to estimate the long run coefficients are discussed,
first from a theoretical perspective and then from an applied perspective. Ex-
amples on how to estimate the models using xtdcce2 are given. The paper
closes with a conclusion.

2 Panel Model and Common Correlated Effects
Estimators

For this section, assume a dynamic ARDL(1,1) panel model with heterogeneous
coefficients in the form of:2

yi,t = µi + λiyi,t−1 + β0,ixi,t + β1,ixi,t−1 + ui,t (1)

ui,t =

m∑
l=1

%y,i,lft,l + ei,t (2)

xi,t =

m∑
l=1

%x,i,lft,l + ξi,t (3)

with i = 1, ..., N and t = 1, ..., Ti,

where yi,t is the dependent variable and xi,t an observed independent variable,
which includes m unobserved common factors ft,l. The estimation of the long
run effect of x on y is the main point of interest. ei,t is a cross-section unit-
specific IID error term. The factor loadings %x,i,l and %y,i,l are heterogeneous
across units and µi is a unit-specific fixed effect. The heterogeneous coefficients
are randomly distributed around a common mean, such that βi = β + vi, and
λi = λ+ai, where vi and ai are random deviations with mean zero, independent
of the error term and the common factors. λi lies strictly inside the unit circle
to ensure a non explosive series.

2.1 Estimating and testing for cross-sectional dependence

The strength of the factors can be measured by a constant 0 ≤ α ≤ 1, the
so-called exponent of cross-sectional dependence. Depending on its limiting be-
haviour Chudik et al. (2011) propose four types of cross sectional dependence,
weak (α = 0), semi-weak (0 < α < 0.5), semi-strong (0.5 ≤ α < 1) and strong
(α = 1) cross-sectional dependence. (Semi-)Weak cross-sectional dependence
can be thought of as the following: even if the number of cross-sectional units
increases to infinity, the sum of the effect of the common factors remains con-
stant. In the case of strong cross-sectional dependence, the sum of the effect

2A more in-depth discussion of the model and the assumptions is provided in Chudik et al.
(2011); Chudik and Pesaran (2015a); Ditzen (2018).
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of the common factors becomes stronger with an increase in the number of
cross-sectional units.

Bailey et al. (2016) propose a method for the estimation of the exponent
of a variable under semi-strong and strong cross-sectional dependence. They
derive a bias-adjusted estimator for α and its standard error based on auxiliary
regressions using principle components and cross-sectional averages. In the case
of estimating the exponent of cross-sectional dependence in residuals Bailey
et al. (2019) propose to use significant pair-wise correlations of the residuals after
multiple testing. A closed form solution for standard errors is not available and
confidence intervals are constructed using a simple bootstrap. The community-
contributed Stata command xtcse2 estimates the exponent of a variable and
residual.

Another possibility to determine the strength of cross-sectional dependence
is to test for (semi-)weak cross-sectional dependence (Pesaran, 2015). Thus the
so-called CD test indirectly tests for α < 0.5. The test statistic is the sum across
all pair-wise correlations and under the null asymptotically standard normal
distributed. For a further theoretical discussion of the CD test see Pesaran
(2015). The CD test is implemented in Stata by the community-contributed
command xtcd2 (Ditzen, 2018).

2.2 Common Correlated Effects Estimator

Given the model in equation (1), leaving the factor structure unaccounted for
leads to an omitted variable bias and OLS becomes inconsistent (Everaert and
De Groote, 2016). Pesaran (2006) and Chudik and Pesaran (2015b) propose an
estimator to estimate equation (1) consistently by approximating the common
factors with cross sectional averages. In a dynamic model the floor of 3

√
T lags

of the cross-sectional averages are added. The estimated equation becomes:

yi,t = µi + λiyi,t−1 + β0,ixi,t + β1,ixi,t−1 +

pT∑
l=0

γ′i,lz̄t−l + ei,t (4)

where z̄t = (ȳt, x̄t)
′ = (1/N

∑N
i=1 yi,t, 1/N

∑N
i=1 xi,t)

′ are the cross sectional
averages of the dependent and independent variables. γi,l = (γy,i,l, γx,i,l)

′
are

the estimated coefficients of the cross-sectional averages and generally treated
as nuisance parameters. The model can be estimated by either a mean group
estimator (Pesaran and Smith, 1995; Pesaran, 2006; Chudik and Pesaran, 2019)
or by a pooled estimator (Pesaran, 2006; Karabiyik et al., 2020).3 This estimator
is known as the common correlated effects mean group estimator (CCE-MG) or
common correlated effects pooled estimator (CCE-P). The CCE-MG estimator
is implemented in Stata by xtmg (Eberhardt, 2012) and both estimators by
xtdcce2 (Ditzen, 2018).

3The assumption of heterogeneous slopes can be tested, see Pesaran and Yamagata (2008);
Blomquist and Westerlund (2013) and in Stata Bersvendsen and Ditzen (2020).
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3 Estimating Long Run Relationships

Dynamic models allow the estimation of long run relationships. They measure
the effect of an explanatory variable on the steady state value of the dependent
variable. Following the notation from equation (1) and assuming that model is
in its steady state with y∗t = y∗t−1 = y∗ and x∗t = x∗t−1 = x∗, the long run effect
of variable x is defined as:

θi =
β0,i + β1,i

1− λi
. (5)

The long run effect in equation (5) can be estimated by an ARDL, DL (dis-
tributed lag) and ECM approach. All three can be augmented by cross-sectional
averages to approximate cross-sectional dependence.

3.1 CS-ECM

The cross-sectionally augmented error correction approach (CS-ECM) follows
on the lines of Lee et al. (1997) and Pesaran et al. (1999). Equation (4) is
transformed into an error correction model (ECM):4

∆yi,t =µi − φi [yi,t−1 − θ1,ixi,t]− β1,i∆xi,t +

pT∑
l=0

γ′i,lz̄t−l + ei,t (6)

with ∆ the first difference operator, θi defined as in (5) and

φi = (1− λi)

is the error-correction speed of adjustment parameter and [yi,t−1 − θ1,ixi,t] is
the error correction term. A long run relationship exists if φi 6= 0 (Pesaran
et al., 1999). β0,i captures the immediate or short run effect of xi,t on yi,t. The
long run or equilibrium effect is captured by θi. The long run effect measures
how the equilibrium changes and φi represents how fast the adjustment occurs.

In the case without cross-sectional dependence and homogeneous long run
coefficients (θi = θ ∀ i), the model can be estimated by the pooled mean group
(PMG) estimator (Pesaran et al., 1999).

3.2 CS-ARDL

An alternative to the CS-ECM is the cross-sectionally augmented ARDL (CS-
ARDL) approach (Chudik et al., 2016). First the short run coefficients are
estimated and then the long run coefficients are calculated. The advantage
of this approach is that a full set of estimates for the long and the short run

4The ECM can be expressed in terms of regressors in time t− 1 instead of time t. In this
case Equation (6) would be: ∆yi,t = µi−φi [yi,t−1 − θ1,ixi,t−1]+β0,i∆xi,t+

∑pT
l=0 γ

′
i,lz̄t−l+

ei,t. This is only a different parametrisation and long run estimates will remain the same.
For a more detailed discussion see the helpfile of the community contributed ardl command
(Kripfganz and Schneider, 2018).

5



coefficients is obtained. An ARDL model can be rewritten as an ECM and
therefore the long run estimates from the CS-ECM and CS-ARDL approaches
are numerically equivalent.

Equation (1) can be generalised to an ARDL(py, px) model:

yi,t = µi +

py∑
l=1

λl,iyi,t−l +

px∑
l=0

βl,ixi,t−l +

p∑
l=0

γ′i,lz̄t−l + ei,t. (7)

The individual long run coefficients are calculated as:

θ̂CS−ARDL,i =

∑px

l=0 β̂l,i

1−
∑py

l=1 λ̂l,i
. (8)

The coefficients can be directly estimated by the mean group or pooled estima-
tor. The mean group variance estimator can be applied (Chudik et al., 2016),
if the mean group estimator is used.

3.3 CS-DL

Under the assumption that λi lies in the unit circle, the general representation
of an ARDL(py, px) model can be written in distributed lag form:5

yi,t = µi + θ1,ixi,t + δi(L)∆xi.t + ũi,t (9)

Chudik et al. (2016) show that Equation (9) can be directly estimated by the
common correlated effects estimator, named the cross-sectionally augmented
DL (CS-DL) approach. The regression is augmented with the differences of the
explanatory variables (x), their lags and the cross-sectional averages. Follow-
ing Pesaran (2006) the estimation is consistent even if the errors are serially
correlated.

For a general ARDL(py, px) model with added cross-sectional averages to
take out strong cross-sectional dependence, the CS-DL estimator is based on
the following equation:

yi,t =µi + θ1,ixi,t +

px−1∑
l=0

δi,l∆xi,t−l (10)

+

pȳ∑
l=0

γy,i,lȳt−l +

px̄∑
l=0

γx,i,lx̄t−l + ei,t,

where ȳt−l and x̄t−l are the cross sectional averages and px̄ = bT 1/3c and pȳ = 0.

5The other parameters are defined as: δi(L) = −
∑∞

l=0

[
λl+1
i (1− λi)−1 β1,i

]
Ll, θ0,i =

(1− λiL)−1 µi, ũi,t = (1− λiL)−1 ui,t and L is the lag operator.
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4 Updates to xtdcce2 command

4.1 Syntax

The updated syntax is described below. The options in the second pair of
brackets are new additions or updated to the version explained in Ditzen (2018):

xtdcce2 depvar
[
indepvars

] [
varlist2 = varlist iv

] [
if
]

crosssectional(varlist cr)
[
, nocrosssectional pooled(varlist p )

cr lags(#) ivreg2options(options1 ) e ivreg2 ivslow

pooledconstant noconstant reportconstant trend pooledtrend

jackknife recursive nocd fullsample showindividual
] [

fast

lr(varlist lr ) lr options(options2 ) exponent

xtcse2options(options3 ) blockdiaguse nodimcheck useinvsym

useqr noomitted showomitted
]

4.2 New and updated options

In the following the updated or new options are explained. For a full explana-
tion see Ditzen (2018, 2019) and the helpfile for xtdcce2.

crosssectional(varlist) defines the variables which are included in zt and
added as cross sectional averages (z̄t−l) to the equation. Variables in crosssectional()

may be included in pooled(), exogenous vars(), endogenous vars() and
lr(). Variables in crosssectional() are partialled out, the coefficients
not estimated and reported. crosssectional( all) adds adds all variables as
cross sectional averages. No cross sectional averages are added if crosssectional( none)
is used, which is equivalent to nocrosssectional. crosssectional() is a
required option but can be substituted by nocrosssectional.

cr lags(#) specifies the number of lags of the cross sectional averages. If not
defined but crosssectional() contains varlist , then only contemporaneous
cross sectional averages are added, but no lags. cr lags(0) is the equivalent.
The number of lags can be different for different variables, following the order
defined in cr().

nocrosssectional prevents adding cross sectional averages. Results will be
equivalent to the Pesaran and Smith (1995) Mean Group estimator, or if
lr(varlist) specified to the Pesaran et al. (1999) Pooled Mean Group esti-
mator.

lr(varlist lr ): Variables to be included in the long-run cointegration vector.
The first variable(s) is/are the error-correction speed of adjustment term.
The default is to use the ECM approach. In this case each estimated coeffi-
cient is divided by the negative of the long-run cointegration coefficient (the
first variable). If the option ardl is used, then the long run coefficients are
estimated as the sum over the coefficients relating to a variable, divided by
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the sum of the coefficients of the dependent variable.
lr options(options2 ) passes options for the long run estimation. options2

may be:
ardl estimates the CS-ARDL estimator.
nodivide, coefficients are not divided by the error correction speed of ad-
justment vector.
xtpmgnames, coefficients names in e(b) and e(V) match the name convention
from xtpmg.

exponent uses xtcse2 to estimate the exponent of the cross-sectional depen-
dence of the residuals. A value above 0.5 indicates strong cross-sectional
dependence.

xtcse2options(options3 ) passes options to xtcse2.
fast omit calculation of unit specific standard errors.
useqr calculates the generalized inverse via QR decomposition. The default is

mata cholinv. QR decomposition was the default for rank-deficient matri-
ces for xtdcce2 pre version 1.35.

useinvsym calculates the generalized inverse via mata invsym.
showomitted displays a cross-sectional unit - variable breakdown of omitted

coefficients.
nomitted suppress checks for collinearity.

4.2.1 New stored values

The new version stores the following two additional results:
Matrices

e(alpha) estimated of exponent e(alphaSE) estimated standard error
of cross-section dependence of exponent of cross-section

dependence

5 The xtcse2 command

5.1 Syntax

xtcse2
[
varlist

] [
if
] [

, pca(integer) standardize nocd residual

reps(integer) size(real) tuning(real) lags(real)
]

5.2 Options

pca(integer) sets the number of principle components for the calculation of cn.
Default is to use the first 4 components.

standardize standardizes variables.
nocenter do not center variables (i.e. cross-sectional mean is zero).
nocd suppresses test for weak cross-sectional dependence using xtcd2.
residual estimates the exponent of cross-sectional dependence in residuals,

following Bailey et al. (2019).
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reps(integer) number of repetitions for bootstrap for calculation of standard
error and confidence interval for exponent in residuals. Default is 100.

size(real) size of the test. Default is 10% (0.1).
tuning(real) tuning parameter for estimation of the exponent in residuals. De-

fault is 0.5.
lags(integer) number of lags (or training period) for calculation of recursive

residuals when estimating the exponent after a regression with weakly ex-
ogenous regressors.

5.3 Stored Values

Matrices
r(alpha) matrix of estimated α r(alphaSE) matrix with

standard errors of α
r(N g) matrix with number r(T) matrix with number

of cross-sectional units of time periods
r(CD) matrix with values r(CDp) matrix of p values

of CD test statistic (if re-
quested)

of CD test statistic (if re-
quested)

r(alphas) matrix with estimated α̃, α̂
and α

6 Empirical Examples

6.1 Estimating and testing for cross-sectional dependence

Blackburne and Frank (2007) explain the use of xtpmg by estimating the long-
run consumption function from Lee et al. (1997) and Pesaran et al. (1999):6

ci,t = θ0t + θ1tyi,t + θ2tπi,t + µi + εi,t, (11)

where ci,t log of consumption per capita, yi,t is log of real per capita income
and πi,t is the inflation rate.

Before estimating the model it is necessary to evaluate if the variables inhibit
cross-sectional dependence. xtcse2 is used to estimate the exponent of and test
for cross-sectional dependence for the variables ci,t (c), yi,t (y) and πi,t (pi):

6The following example uses the jasa2 dataset, which is available with the xtpmg command.
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. xtcse2 c pi y
Cross-Sectional Dependence Exponent Estimation and Test

Panel Variable (i): id
Time Variable (t): year

Estimation of Cross-Sectional Exponent (alpha)

variable alpha Std. Err. [95% Conf. Interval]

c 1.004833 .0544669 .8980796 1.111586
pi 1.004841 1.763292 -2.451148 4.460831
y 1.004833 .0466978 .913307 1.096359

0.5 <= alpha < 1 implies strong cross-sectional dependence.

Pesaran (2015) test for weak cross-sectional dependence.
H0: errors are weakly cross-sectional dependent.

variable CD p-value N_g T

c 89.656 0.000 24 33
pi 96.751 0.000 24 33
y 89.659 0.000 24 33

The CD test rejects the null of weak cross-sectional dependence for all vari-
ables and the estimated exponent of cross-sectional dependence is well above 0.5.
This is evidence that an estimation method taking cross-sectional dependence
into account is necessary. All remaining examples are dynamic models. Follow-
ing Chudik and Pesaran (2015b) the contemporaneous levels of the dependent
and independent variables and the floor of T 1/3 lags of the cross-sectional av-
erages will be added to approximate strong cross-sectional dependence. After
each regression the residuals are tested for strong cross-sectional dependence
using the CD test and the exponent of cross-sectional dependence estimated.

6.2 CS-ECM

The ECM representation of the equation (11) reads:

∆ci,t = µi − φi(ci,t−1 − θ1,iyi,t − θ2,iπi,t)− β1,i∆yi,t − β2,i∆πi,t + εi,t. (12)

Blackburne and Frank (2007) and Ditzen (2018) estimate a pooled mean group
model without and with contemporaneous cross-sectional averages using xtpmg

and xtdcce2. This exercises focuses on the CS-ECM model and all coefficients
are assumed to be heterogeneous. Following Chudik and Pesaran (2015b) p =
bT 1/3c = b291/3c = 3 lags of the cross-sectional averages are added to estimated
equation (12):7

7b.c denotes the floor of a number.
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. xtdcce2 d.c d.y d.pi if year >= 1962, ///
> lr(L.c y pi) cr(_all) cr_lags(3) exponent
(Dynamic) Common Correlated Effects Estimator - Mean Group (CS-ECM)

Panel Variable (i): id Number of obs = 695
Time Variable (t): year Number of groups = 24

Degrees of freedom per group: Obs per group:
without cross-sectional avg. min = 22 min = 28

max = 23 avg = 29
with cross-sectional avg. min = 10 max = 29

max = 11
Number of F(432, 263) = 2.90
cross-sectional lags = 3 Prob > F = 0.00
variables in mean group regression = 120 R-squared = 0.17
variables partialled out = 312 R-squared (MG) = 0.83

Root MSE = 0.01
CD Statistic = 0.27

p-value = 0.7899

D.c Coef. Std. Err. z P>|z| [95% Conf. Interval]

Short Run Est.

Mean Group:
D.y .0088767 .0511634 0.17 0.862 -.0914017 .109155

D.pi .0146379 .0412939 0.35 0.723 -.0662966 .0955725

Adjust. Term

Mean Group:
L.c -.6112082 .056361 -10.84 0.000 -.7216738 -.5007426

Long Run Est.

Mean Group:
pi -.5976237 .275682 -2.17 0.030 -1.13795 -.057297
y .7872628 .0995928 7.90 0.000 .5920646 .982461

Mean Group Variables: D.y D.pi pi y
Cross Sectional Averaged Variables: pi y c
Long Run Variables: pi y
Cointegration variable(s): L.c
Heterogenous constant partialled out.
Estimation of Cross-Sectional Exponent (alpha)

variable alpha Std. Err. [95% Conf. Interval]

residuals .5844011 .0243676 .5366414 .6321607

0.5 <= alpha < 1 implies strong cross sectional dependence.
SE and CI bootstrapped with 100 repetitions.

The mean group estimate of the partial adjustment coefficients is φ̂ = −0.611
(L.c), the long run effect of income on consumption is θ̂1 = 0.787 (y) and of

inflation on consumption is θ̂2 = −0.598 (pi). The results imply that 61.1%
of the disequilibrium is adjusted every period. An increase in income increases
consumption in the long run, while an increase in prices hampers consumption
in the long run.

There are some notable differences between xtpmg and xtdcce2. xtpmg cal-
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culates the long run coefficients using maximum likelihood. xtdcce2 internally
estimates (leaving out any cross-sectional averages):

∆ci,t = µi − φici,t−1 + κ1,iyi,t + κ2,iπi,t − β1,i∆yi,t − β2,i∆πi,t + εi,t, (13)

using OLS with κ1,i = −θ1,iφi and κ2,i = −θ2,iφi. The long run coefficients and
the mean group coefficients are estimated in three steps and the variances are
calculated using the Delta method. First, the cross-section specific coefficients
µi, φi, κ1,i, κ2,i, β1,i and β2,i are estimated. Then the cross-section specific long
run coefficients are calculated. Lastly, the mean group coefficients are calculated
as the unweighed average over the unit specific long run coefficients. As an
example, the average long run unit specific coefficient for θ̂1,i is derived as

θ̂1,i = −κ̂1,i/φ̂i. Then the mean group estimator is: ˆ̄θ1 = 1/N
∑N

i=1 θ̂1,i =

1/N
∑N

i=1(−κ̂1,i/φ̂i).
The PMG estimator assumes homogeneous long run and heterogeneous short

run coefficients. xtdcce2 is build to handle both coefficients to be heterogeneous
and/or homogeneous. If the long run coefficients are homogeneous but the short
run coefficients heterogeneous, then the mean group estimate of the error speed
of correction term is used to calculate the long run coefficient. They then become
θp1 = −κp1/φMG.

The option exponent is used to calculate the exponent of the cross-sectional
dependence using xtcse2. Standard errors and confidence intervals can be ob-
tained by a simple bootstrap in which the cross-sectional units are drawn with
replacement. xtdcce2 automatically runs a bootstrap with 100 repetitions. Fur-
ther options to xtcse2 can be passed by the option xtcse2option(options).
In the example above, the p-value of the CD test is 0.79 and the test cannot re-
ject the null hypothesis of (semi-)weak cross-sectional dependence. Bailey et al.
(2019, p. S92) state that the estimated exponent of cross-sectional dependence
should be close to 0.5 if the residuals are weakly cross-sectional dependent.
The estimated exponent of cross-sectional dependence is 0.588 and close to the
threshold of 0.5.

6.3 CS-ARDL

The ECM in equation (12) can be transferred into an ARDL(1,1,1) model:

ci,t = µi + λici,t−1 + β10,iyi,t + β11,iyi,t−1 + β20,iπi,t + β20,iπi,t−1 + εi,t. (14)

Using xtdcce2, all short run variables are added to the lr option and the ARDL
routine is invoked by using lr options(ardl):8

8There is no need to specify the long run variables separately as xtdcce2 automatically
detects the common base of variables if time series operators are used. If lags are created
as variables via gen lx = L.x, then the variables with the same base which form a long run
coefficient need to be enclosed in parenthesis, for example lr((y ly) (x lx)).
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. xtdcce2 c if year >= 1962, ///
> lr(L.c L(0/1).y pi L.pi) lr_options(ardl) ///
> cr(_all) cr_lags(3)
(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)

Panel Variable (i): id Number of obs = 695
Time Variable (t): year Number of groups = 24

Degrees of freedom per group: Obs per group:
without cross-sectional avg. min = 22 min = 28

max = 23 avg = 29
with cross-sectional avg. min = 10 max = 29

max = 11
Number of F(432, 263) = 3.27
cross-sectional lags = 3 Prob > F = 0.00
variables in mean group regression = 120 R-squared = 0.16
variables partialled out = 312 R-squared (MG) = 1.00

Root MSE = 0.01
CD Statistic = 0.27

p-value = 0.7899

c Coef. Std. Err. z P>|z| [95% Conf. Interval]

Short Run Est.

Mean Group:
L.c .3887918 .056361 6.90 0.000 .2783262 .4992574
pi -.1113299 .0760736 -1.46 0.143 -.2604314 .0377716
y .486285 .0598417 8.13 0.000 .3689975 .6035726

L.y -.0088767 .0511634 -0.17 0.862 -.109155 .0914017
L.pi -.0146379 .0412939 -0.35 0.723 -.0955725 .0662966

Adjust. Term

Mean Group:
lr_c -.6112082 .056361 -10.84 0.000 -.7216738 -.5007426

Long Run Est.

Mean Group:
lr_pi -.5976237 .275682 -2.17 0.030 -1.13795 -.057297
lr_y .7872628 .0995928 7.90 0.000 .5920646 .982461

Mean Group Variables: L.c pi y L.y L.pi lr_pi lr_y
Cross Sectional Averaged Variables: pi y c
Long Run Variables: lr_pi lr_y
Adjustment variable(s): lr_c (L.c)
Heterogenous constant partialled out.

As expected, the regression results are the same as above for the CS-ECM
model. In the output the long run coefficient estimates have the prefix lr

and the adjustment parameter (φ) is displayed in a separate section. If the
long run coefficients are pooled, xtdcce2 uses the delta method to calculate the
variance/covariance matrix of the long run coefficients.

For the remaining examples, the results in Chudik et al. (2013) will be repli-
cated. The authors estimate the long run effect of public debt on output growth
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with the following equation:

∆yi,t = µi +

p∑
l=1

λi,l∆yi,t−l +

p∑
l=0

β′i,lxi,t−l +

3∑
l=0

γ′i,lz̄t−l + ei,t (15)

where yi,t is the logarithm of real GDP and ∆yi,t its growth rate. xi,t =
(∆di,t, πi,t)

′, di,t is log of debt to GDP ratio and π is the log of the inflation
rate and p the number of lags. The cross-sectional averages are z̄t = (x̄t, ∆̄yt)

′.
The variables in the example dataset are dy for ∆yi,t, dgd for ∆di,t and dp for
the inflation rate πi,t.

The degree of cross-sectional dependence is checked with:

. xtcse2 y dp gd, standardize

output omitted

All variables are strongly cross-sectional dependent with α̂y = 1, α̂dp = 0.94
and α̂dgd = 0.92. The CD-test statistic yields the same conclusion, all variables
contain strong cross-sectional dependence.

Next, we can turn to estimate the ARDL model. As before 3 lags of the cross
sectional averages are added to take out any strong cross-sectional dependence.
To replicate the results of the ARDL(1,1,1) model from Chudik et al. (2013,
Table 17), the first lag of the dependent and the base and the first lag of the
dependent variables are added:
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. xtdcce2 dy , lr(L.dy L.dp dp L.dgd dgd) ///
> lr_options(ardl) cr(dy dp dgd) cr_lags(3) ///
> fullsample
(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)

Panel Variable (i): ccode Number of obs = 1599
Time Variable (t): year Number of groups = 40

Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages = 33.975
with cross-sectional averages = 21.975

Number of F(720, 879) = 0.79
cross-sectional lags = 3 Prob > F = 1.00
variables in mean group regression = 200 R-squared = 0.61
variables partialled out = 520 R-squared (MG) = 0.44

Root MSE = 0.03
CD Statistic = 0.57

p-value = 0.5690

dy Coef. Std. Err. z P>|z| [95% Conf. Interval]

Short Run Est.

Mean Group:
L.dy .0475615 .0393516 1.21 0.227 -.0295662 .1246891

dp -.1036032 .0402887 -2.57 0.010 -.1825676 -.0246389
dgd -.0745686 .0122305 -6.10 0.000 -.0985399 -.0505974

L.dp -.019946 .0462871 -0.43 0.667 -.1106671 .070775
L.dgd -.0132481 .0156115 -0.85 0.396 -.0438461 .0173498

Adjust. Term

Mean Group:
lr_dy -.9524385 .0393516 -24.20 0.000 -1.029566 -.8753109

Long Run Est.

Mean Group:
lr_dgd -.0873993 .0164431 -5.32 0.000 -.1196272 -.0551713
lr_dp -.1639757 .0378599 -4.33 0.000 -.2381797 -.0897717

Mean Group Variables: L.dy dp dgd L.dp L.dgd lr_dgd lr_dp
Cross Sectional Averaged Variables: dy dp dgd
Long Run Variables: lr_dgd lr_dp
Adjustment variable(s): lr_dy (L.dy)
Heterogenous constant partialled out.

The long run coefficients for the logarithm of debt to GDP ratio and inflation
are both significant and negative. A decrease in the debt burden and inflation
will increase GDP growth. A one percent decrease of the debt to GDP growth
is associated with an increase of the GDP growth rate of 0.16%. A one percent
decrease in the inflation rate leads to an increase of the GDP growth rate of
0.087%. The partial adjustment to the long run equilibrium appears to be very
quick, 95% of the gap is closed within one year.

For the ARDL(3,3,3) the 3 lags of the explanatory variables and the depen-
dent variable are added. To improve readability, the different bases are enclosed
into parenthesis:
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. xtdcce2 dy , cr_lags(3) fullsample ///
> lr(L(1/3).(dy) (L(0/3).dp) (L(0/3).dgd) ) ///
> lr_options(ardl) cr(dy dp dgd)
(Dynamic) Common Correlated Effects Estimator - (CS-ARDL)

Panel Variable (i): ccode Number of obs = 1562
Time Variable (t): year Number of groups = 40

Degrees of freedom per group: Obs per group (T) = 39
without cross-sectional averages = 27.05
with cross-sectional averages = 15.05

Number of F(960, 602) = 0.96
cross-sectional lags = 3 Prob > F = 0.71
variables in mean group regression = 440 R-squared = 0.39
variables partialled out = 520 R-squared (MG) = 0.51

Root MSE = 0.02
CD Statistic = -0.51

p-value = 0.6108

dy Coef. Std. Err. z P>|z| [95% Conf. Interval]

Short Run Est.

Mean Group:
L.dy .0123738 .0349377 0.35 0.723 -.0561029 .0808506

L2.dy -.1395645 .0948427 -1.47 0.141 -.3254529 .0463238
L3.dy -.082903 .1072901 -0.77 0.440 -.2931877 .1273817

dp -.070708 .0503039 -1.41 0.160 -.1693018 .0278858
dgd -.085307 .0137595 -6.20 0.000 -.1122752 -.0583388

L.dp -.0312712 .0513435 -0.61 0.542 -.1319025 .0693601
L2.dp .0982105 .1017365 0.97 0.334 -.1011893 .2976103
L3.dp -.0424631 .0581692 -0.73 0.465 -.1564726 .0715464
L.dgd -.0270311 .0204753 -1.32 0.187 -.0671619 .0130997

L2.dgd -.0114103 .012726 -0.90 0.370 -.0363528 .0135322
L3.dgd .0283551 .0177666 1.60 0.110 -.0064667 .0631769

Adjust. Term

Mean Group:
lr_dy -1.210094 .2005902 -6.03 0.000 -1.603243 -.8169442

Long Run Est.

Mean Group:
lr_dgd -.1198362 .0402251 -2.98 0.003 -.198676 -.0409965
lr_dp -.0795245 .0586992 -1.35 0.175 -.1945727 .0355238

Mean Group Variables: L.dy L2.dy L3.dy dp dgd L.dp L2.dp L3.dp L.dgd L2.dgd L3.dgd lr_dgd lr_dp
Cross Sectional Averaged Variables: dy dp dgd
Long Run Variables: lr_dgd lr_dp
Adjustment variable(s): lr_dy (L.dy L2.dy L3.dy)
Heterogenous constant partialled out.
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6.4 CS-DL

Besides the ARDL model, Chudik et al. (2013) estimate an CS-DL model. Equa-
tion (15) in CS-DL form is:

∆yi,t = µi + θ′ixi,t +

p−1∑
l=0

β′i,l∆xi,t−l + γy,i∆ȳt +

3∑
l=0

γ′x,i,lx̄t−l + ei,t

The results from Chudik et al. (2013, Table 18) with 1 lag (p = 1) in the form
of an ARDL(1,1,1) model can be replicated as follows

. xtdcce2 dy dp dgd d.(dp dgd) ///
> , cr(dy dp dgd) cr_lags(0 3 3) fullsample
(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): ccode Number of obs = 1601
Time Variable (t): year Number of groups = 40

Degrees of freedom per group: Obs per group (T) = 40
without cross-sectional averages = 35.025
with cross-sectional averages = 26.025

Number of F(560, 1041) = 0.90
cross-sectional lags 0 to 3 Prob > F = 0.93
variables in mean group regression = 160 R-squared = 0.67
variables partialled out = 400 R-squared (MG) = 0.40

Root MSE = 0.03
CD Statistic = 1.11

p-value = 0.2667

dy Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean Group:
dp -.0889337 .0256445 -3.47 0.001 -.1391959 -.0386715

dgd -.0865123 .0143 -6.05 0.000 -.1145398 -.0584849
D.dp .0053277 .0413627 0.13 0.898 -.0757417 .0863971

D.dgd .0068065 .0148306 0.46 0.646 -.022261 .0358739

Mean Group Variables: dp dgd D.dp D.dgd
Cross Sectional Averaged Variables: dy(0) dp(3) dgd(3)
Heterogenous constant partialled out.

The first differences as part of the vector ∆xi,t are added as d.(dp dgd).
The fullsample option is used to make use of the entire sample. The long run
coefficients are −0.0889 (dp) and −0.0865 (dgd). While the coefficient on the
inflation rate is almost identical to the CS-ARDL model, the coefficient on the
debt to GDP is about half the absolute size. A (dis-)advantage of the CS-DL
model is that no partial adjustment coefficient is estimated because the long
run coefficients are directly estimated.

An ARDL(3,3,3) model is estimated using three rather than one lag for the
differences and L(0/2).d.(dp dgd) replaces d.(dp dgd):
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. xtdcce2 dy dp dgd L(0/2).d.(dp dgd) ///
> , cr(dy dp dgd) cr_lags(0 3 3) fullsample
(Dynamic) Common Correlated Effects Estimator - Mean Group

Panel Variable (i): ccode Number of obs = 1571
Time Variable (t): year Number of groups = 40

Degrees of freedom per group: Obs per group (T) = 39
without cross-sectional averages = 30.275
with cross-sectional averages = 21.275

Number of F(720, 851) = 1.12
cross-sectional lags 0 to 3 Prob > F = 0.06
variables in mean group regression = 320 R-squared = 0.51
variables partialled out = 400 R-squared (MG) = 0.47

Root MSE = 0.03
CD Statistic = 0.73

p-value = 0.4680

dy Coef. Std. Err. z P>|z| [95% Conf. Interval]

Mean Group:
dp -.0855842 .0400845 -2.14 0.033 -.1641483 -.00702

dgd -.0816583 .0196252 -4.16 0.000 -.1201231 -.0431936
D.dp .0183584 .0478696 0.38 0.701 -.0754643 .112181

LD.dp .0015586 .0373619 0.04 0.967 -.0716695 .0747866
L2D.dp .0034012 .0294771 0.12 0.908 -.0543729 .0611752
D.dgd .0045224 .0144741 0.31 0.755 -.0238463 .0328912

LD.dgd -.0129675 .0134553 -0.96 0.335 -.0393395 .0134045
L2D.dgd -.0095151 .0090813 -1.05 0.295 -.0273142 .008284

Mean Group Variables: dp dgd D.dp LD.dp L2D.dp D.dgd LD.dgd L2D.dgd
Cross Sectional Averaged Variables: dy(0) dp(3) dgd(3)
Heterogenous constant partialled out.

The first two variables (dp and dgd) represent the long run coefficients.

7 Conclusion

This paper explained how to test for cross-sectional dependence and estimate
the exponent of cross-sectional dependence using the community contributed
command xtcse2. It then reviewed three different methods to estimate long
run coefficients in dynamic panels with a large number of observations over
time and cross-sectional units and with cross-sectional dependence. It uses an
extended version of xtdcce2 (Ditzen, 2018) which allows for the estimation
of long run coefficients using the CS-DL, CS-ARDL and CS-ECM estimator.
Examples on how to apply xtdcce2 are given and options are explained.
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