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Abstract Efficient energy production and distribution systems are urgently needed
to reduce world climate change. Since modern district heating systems are sustain-
able energy distribution services that exploit renewable sources and avoid energy
waste, in-depth knowledge of thermal energy demand, which is mainly affected by
weather conditions, is essential to enhance heat production schedules. We hence
propose a mixture copula-based approach to investigate the complex relationship
between meteorological variables, such as outdoor temperature and solar radia-
tion, and thermal energy demand in the district heating system of the Italian
city Bozen-Bolzano. We analyse data collected from 2014 to 2017, and estimate
copulas after removing serial dependence in each time series using autoregressive
integrated moving average models. Due to complex relationships, a mixture of an
unstructured Student-t and a flipped Clayton copula is deemed the best model, as
it allows differentiating the magnitude of dependence in each tail and exhibiting
both heavy-tailed and asymmetric dependence. We derive the conditional copula-
based probability function of thermal energy demand given meteorological vari-
ables, and provide useful insight on the production management phase of local
energy utilities.
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1 Introduction

Efficient energy production and distribution systems are urgently needed as crucial
elements of the climate change response in Europe and many other regions (Math-
iesen et al., 2011; Eriksson et al., 2007; Lund et al., 1999). By 2020, the European
Commission’s strategy (European Commission, 2011) for competitive, sustainable,
and secure “Energy 2020” aims to “reduce its greenhouse gas emissions by at least
20%, increase the share of renewable energy to at least 20% of consumption, and
achieve energy savings of 20% or more”. To achieve these targets, the EU is making
an effort to identify strategies to decrease recourse to fossil fuels, limit environmen-
tal pollution, and reduce climate change. Amongst others, the implementation of
the Strategic Energy Technology Plan (European Commission, 2015) should accel-
erate the development of low-carbon energy systems. These systems aim to exploit
the full potential of renewable energy sources, such as geothermal and solar, to
satisfy heating and cooling demand.

Lund (2014) describes the technical characteristics of sustainable energy sys-
tems and identifies the challenges for developing a system entirely based on a
renewable non-fossil heat supply. Smart networks for energy transition, such as
district heating and cooling, should be designed to distribute heat through net-
works with low grid losses to existing buildings, energy-renovated buildings, and
new low-energy buildings (Lund et al., 2014). Specifically, district heating systems
(DHSs hereafter) are thermal energy distribution services that allow matching lo-
cal energy sources with urban heat requirements through pipeline networks and
heat exchangers (Frederiksen and Werner, 2013). The recent development of these
systems is typically based on a combination of fluctuating renewable energy sources
(e.g., wind, geothermal, and solar power), with residual resources (e.g., waste and
biomass). The intermittent and unpredictable nature of renewable sources entails
designing DHSs in such a way that thermal energy demand can be satisfied even
when renewable sources are limited (Lund et al., 2018). Hence, an efficient energy
production and distribution system requires in-depth knowledge of thermal energy
demand.

As well-known, thermal energy demand depends on meteorological variables,
including outdoor temperature, wind speed, solar radiation, humidity, and pre-
cipitation, which can have a strong impact on demand (Soutullo et al., 2016).
Variations in weather conditions affect energy consumption whose management
is often enormously challenging. Moreover, increasingly likely extreme climatic
events are a problem for the energy production process, which must be able to
adequately deal with unexpected energy demand. Hence, efficiently planning and
managing a heating system, especially in the case of DHS, urgently requires in-
depth knowledge of the complex relationship between thermal energy demand and
meteorological variables. Knowledge of thermal energy demand and the complex
relationship with the weather is also crucial to obtain reliable forecasts of such
demand. These challenging needs induce resorting to copula theory.

Copula (Sklar, 1959) is a distribution function that potentially enables describ-
ing any kind of complex multivariate dependence structure of the data generating
process without information on margins. Copulas have shown their considerable
usefulness due to their theoretical and practical advantages. Compared with stan-
dard approaches, such as multivariate normal distribution, copula models, or cop-
ulas, (Trivedi and Zimmer, 2005; Durante and Sempi, 2015) are indeed a powerful
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tool to describe the dependence structure in a set of random variables that exhibit
non-linear and non-Gaussian relations, heavy tails, and asymmetries. Copulas have
been successfully used in several multivariate statistics fields, e.g., time series anal-
ysis (Chen and Fan, 2006; Zhao and Zhang, 2018) and clustering (Di Lascio and
Giannerini, 2016; Prenen et al., 2017), and applied in a wide range of domains,
e.g., environmental sciences (Belzunce et al., 2016; Baey et al., 2017; Grler et al.,
2017), genetics and medicine (Shi and Zhang, 2015; Behrouzi and Wit, 2018),
and engineering (Genest and Favre, 2007; Zhu and Zhao, 2018). Moreover, to fur-
ther enhance the flexibility of multivariate distribution modelling and generate
dependence structures not belonging to existing copula families, a finite mixture
of heterogeneous parametric copulas can be used. A number of studies adopt the
finite mixture of parametric copula densities modelling approach, see, e.g., Hu
(2006); Zimmer (2012); Liu et al. (2019); Qu and Lu (2019).

In this study, we aim to investigate the complex relationship between thermal
energy demand and meteorological variables and quantify the effect of extreme
climatic events on district heating demand. To provide evidence of the complex re-
lationship between meteorological variables and thermal energy demand, we adopt
an approach based on copulas and combinations of copulas, looking at the con-
ditional distribution function of thermal energy demand given certain weather
conditions. This function enables obtaining relevant information mainly on the
production schedule and the management of thermal storage. The copula function
has several advantages in this context. First, the copula model ensures flexibility in
jointly modelling variables with a different and complex univariate density func-
tion. Second, the copula model easily accommodates the asymmetry and heavy
tails of thermal energy demand and meteorological variables. Third, the effect of
weather can be identified through a functional form by specifying the conditional
copula of thermal energy demand. Fourth, copula mixtures allow differentiating
the contribution to the dependence in each tail, capturing diverse patterns of
dependence in the data, and hence to offer a less restrictive parametric model-
ing. Moreover, to the best of our knowledge, a copula mixture-based approach
has never been applied to energy and meteorological variables in a multivariate
perspective. The only study based on copulas and analysing the impact of tem-
perature on energy demand is that of Di Lascio et al. (2019) using a bivariate
copula with symmetric dependencies and focusing only on peak thermal power de-
mand. Conversely, we here i) investigate the joint impact of a multivariate set of
meteorological variables on daily thermal energy demand, ii) attempt to shed new
light on how extreme climatic phenomena affect energy demand by also exploiting
the advantages of copula mixtures, and iii) discuss the implications of the selected
copula model on energy production.

In the empirical analysis, we apply copula theory to a dataset from the Italian
city Bozen-Bolzano related to the heating season in a 3-year period (from 15-10 to
15-04 for each year). The dataset contains meteorological data, e.g., solar radiation
and outdoor temperature, collected by a weather station, and thermal energy
demand provided by intelligent substations equipped with smart meter devices.
We find that the unstructured Student-t–flipped Clayton copula mixture, which
exhibits heavy-tailed and asymmetric dependence, best suits our data. Moreover,
the conditional version of the selected copula enables investigating the probability
of exceeding energy production under extreme weather conditions. Our findings
are expected to improve our understanding of thermal energy demand according
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to real and simulated weather scenarios to aid the development of appropriate
production management strategies.

The remainder of the paper is organized as follows. Section 2 describes a typical
DHS and its role in a sustainable energy system. Section 3 illustrates the collected
data concerning the DHS of the Italian city Bozen-Bolzano. Section 4 presents
the statistical methodology used and applied in Section 5. Section 6 discusses the
findings and the managerial implications. Section 7 presents concluding remarks.

2 District heating system and sustainable energy

District heating systems are thermal energy distribution services that provide heat
through pipeline networks and heat exchanger substations. The first DHS was
introduced in the United States at the end of 19th century using steam as the heat
carrier (Woods and Overgaard, 2016) with the main aim of increasing security and
comfort with respect to individual boilers. From the 1930s to 1970s, the second
generation of DHSs was developed, usually using pressurised hot water over 100◦C
to distribute heat to achieve fuel savings, and introducing combined heat and power
(CHP hereafter). The two oil crises of 1973 and 1979 resulted in upgrading and
deploying DHSs aimed at increasing energy efficiency and introducing alternative
non-fossil fuel-based sources, such as biomass and waste. The third generation of
DHSs use low temperature hot water (below 100◦C) as the heat carrier, and better
performing materials, such as pre-insulated pipes, and compact heat exchanger
substations (Lund et al., 2014; Woods and Overgaard, 2016; Werner, 2017).

Recently, a new concept of DHS based on a sustainable energy system consist-
ing of 100% renewable sources has been introduced (Connolly et al., 2012, 2013).
The so-called 4th DHS generation (Lund et al., 2014) has to support energy tran-
sition from a traditional fossil system to a sustainable energy system in which
renewable resources are preponderant, and particular attention is paid to energy
conservation and efficiency measures (Lund, 2007; Lund and Mathiesen, 2009;
Mathiesen et al., 2014). Thus, DHSs are based on a pool of heat sources: fluctu-
ating renewable sources, such as geothermal and solar power, residual resources,
such as biomass and waste, energy recovered from waste and industrial surplus,
and energy from efficient technologies such as CHP and heat pumps (Frederiksen
and Werner, 2013).

Due to the urgent need to increase the sustainability and efficiency of energy
systems and reduce their environmental impact, DHSs assume an important role
in urban areas for several reasons. First, central management of the heat supply
replaces less efficient domestic boilers of single or groups of apartments. Second,
DHSs enable using scarce local heat sources and recovering heat with the re-
duced use of higher quality fuels, such electricity power and gas. Third, DHSs
allow managing fluctuating renewable sources using thermal storage with heat ca-
pacity compensation from the daily to the seasonal. Fourth, DHSs enhance the
resilience and reliability of the supply system, as well as decreasing maintenance
costs. Fifth, the smart energy system of the future entails coordinating the gas,
thermal, electricity, and water grid for the optimal management of the entire en-
ergy system (Lund et al., 2018; Werner, 2017; Ilic et al., 2014; Lund et al., 2014).
Nevertheless, DHSs also have some weaknesses, requiring an initial high capital
investment and a complex institutional framework.
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Today, DHSs have a significant role in heat supply with 11.5 EJ of heat sup-
plied worldwide in 2014 (IEA International Energy Agency, 2016). However, the
exploitation of DHSs varies considerably from country to country, with the most
developed systems in Denmark and Iceland where the majority of residential build-
ings located in urban areas are supplied by DHSs. While DHSs are deemed impor-
tant in supporting future energy and environmental targets, such as the reduction
of carbon dioxide emissions, the potentialities of DHSs need further identification
and implementation (Werner, 2017).

3 Dataset of the district heating system of Bozen-Bolzano

Residential and industrial heat demand in the city of Bozen-Bolzano is partially
fulfilled by a DHS that is in continuous expansion. Currently, the DHS feeds around
3.500 apartments and 100 industrial-commercial buildings through a pipe network
of 23 Km. The DHS is characterised by three heat production facilities consisting
of a waste-to-energy plant (WtE hereafter), two combined heat and power (CHP
hereafter) engines, and six traditional natural gas-fed boilers with a total thermal
capacity of 79.2 MW . In October 2016, a new thermal storage tank was added to
improve the production management of the DHS.

The dataset gathered includes both the thermal energy demand of consumers
connected to the DHS of Bozen-Bolzano and the meteorological data of the weather
station of S. Maurizio observed from 2014 to 2017. We select data of the heating
season in Bozen-Bolzano that starts on October 15th and ends on April 15th ac-
cording to DPR Decreto del Presidente della Repubblica n. 74 (16 aprile 2013),
Art. 4. The DHS of Bozen-Bolzano is characterized by an intelligent energy net-
work endowed with smart heat meters, that provide real-time information and
high quality monitoring (Sun et al., 2016). These innovative devices, integrated in
each substation, are fundamental in this study, as they yield high quality and high
frequency data. Hence, as for thermal energy demand, each substation of the DHS
provides observations of 15 minutes each. To avoid truncated time series, we select
the 110 substations that provide time series with no null interval of data. Next, we
apply a filter to detect outliers, i.e., values that exceed the maximum exchange-
able power of each substation. These values are treated as missing values due to
measurement errors of the substation heat meters. We obtain the daily thermal
energy demand (TED hereafter) by aggregating the observations of each day over
the substations. The filtering procedure leads to 36 missing data, that is, 6.55% of
the total number (550). Hence, we impute the thermal energy demand time series
using a seasonal Kalman filter (Moritz and Bartz-Beielstein, 2017; Moritz et al.,
2015). Fig. 1 presents the TED time series with imputed data. Note that, forth-
with, we indicate with TED the imputed time series of thermal energy demand.

As for the meteorological variables, we observe the outdoor temperature (OT
hereafter), solar radiation (SR hereafter), humidity, wind speed, and precipitation
detected every 5 or 10 minutes by the weather station. We average the observations
of each day to obtain the daily value of each meteorological variable.

First, we look at the relationship between thermal energy demand and all the
observed meteorological variables. The estimated Spearman’s correlation coeffi-
cient ρ̂s and associated p-value are shown in Tab. 1. These results together with
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Fig. 1 TED (in MWh) time series: black segments for imputed values, grey segments for
observed values.

Table 1 Estimated Spearman’s correlation coefficient ρ̂s between TED and each of the
observed meteorological variables, and the p-value of the corresponding test.

Outdoor Solar
Humidity

Wind
Precipitation

temperature radiation speed

ρ̂s −0.926 −0.523 0.077 −0.273 −0.087
p-value < 0.001 < 0.001 0.07 < 0.001 0.040

the scatter plot of TED versus humidity, wind speed, and precipitation shown
in Fig. 2 lead us to consider in the subsequent analysis only the OT and the
SR variables. The preliminary correlation analysis indicates strong negative and
significant dependence between TED and OT, and moderate negative significant
dependence between TED and SR (see Tab. 1). On the contrary, the Spearman’s
correlation coefficient estimated on OT and SR is ρ̂s = 0.52 (p-value < 0.001),
showing significant and positive dependence between the two meteorological vari-
ables. Fig. 3 shows the three-dimensional scatter plot of the selected time series on
the left, and the pair scatter plot on the right. These plots highlight a non-linear
and asymmetric dependence between the variables of interest.

4 Methodology

The statistical methodology using copula function theory enables investigating
the dependence structure between daily thermal energy demand and the mete-
orological variables. Since we have serial dependent data, we first model each
time series separately through the seasonal autoregressive integrated moving av-
erage (SARIMA hereafter) models according to the well-known Box-Jenkins pro-
cedure (Box and Jenkins, 1970). Second, we obtain the residual time series and
analyse the multivariate cross-dependence relationship through the copula. Fi-
nally, we derive the conditional probability function of thermal energy demand
given the outdoor temperature and solar radiation, analysing it according to ex-
treme climatic scenarios. We assume that the functional form of the copula remains
fixed over time, and the sample and dependence parameter is not allowed to vary
according to an evolution equation. This choice is motivated by the fact that we
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Fig. 2 Scatter plot of TED in MWh, humidity in %, wind speed in m/s, and precipitation
in mm.

focus the analysis only on daily data of thermal energy demand in the heating
season whose dependence is not expected to change over time.

4.1 Marginal modelling using ARIMA

To analyse the serial dependence of outdoor temperature, solar radiation, and
thermal energy demand, we use the well-known SARIMA models that enable
capturing both the trend (seasonal and non) and autocorrelation. The general
SARIMA(p, d, q)(P,D,Q)s model for a generic univariate stochastic process Zt is
as follows:

φp(B)ΦP (Bs)∇d∇Ds Zt = θq(B)ΘQ(Bs)εt (1)

where εt ∼WN(0, σ2ε) is the classic white noise process with variance σ2ε , φp(B) =
1 − φ1B − φ2B2 − · · · − φpBp (ΦP (Bs) = 1 − Φ1B

s − Φ2B
2s − · · · − ΦpBPs) is the

autoregressive (seasonal autoregressive) polynomial in B of grade p (P ), θq(B) =
1− θ1B − θ2B2 − · · · − θqBq (ΘQ(Bs) = 1−Θ1B

s −Θ2B
2s − · · · −ΘQBQs) is the
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Fig. 3 Three-dimensional scatter plot of OT in ◦C (x-axis), SR in W/m2 (y-axis), and TED
in MWh (z-axis) (left), and pair scatter plot of OT, SR, and TED (right).

moving average (seasonal moving average) polynomial in B of grade q (Q), and
∇d = (1 − B)d (∇Ds = (1 − Bs)D) is the difference (seasonal difference) operator
of order d (D). Hence, the identification of the values p, P, q,Q, d, and D enables
developing a specific model and proceed with its estimation. We analyse the three
time series separately according to the Box-Jenkins procedure (Box and Jenkins,
1970), which due to its simplicity and generality is the most frequently used.
Being a classic approach, we do not go into details of the procedure and recall
only its main steps: 1. analysis of the stationarity of the time series and selection
of the potential difference operator and transformation to obtain stationarity, 2.
identification of the SARIMA model based on the autocorrelation and partial
autocorrelation function of the stationary time series, 3. check for the goodness of
the selected SARIMA model, mainly through the t-test of the estimated coefficients
and the Ljung-Box test for the autocorrelation of residuals.

4.2 Joint and conditional dependence modelling using copulas

To investigate the multivariate and complex relationship between outdoor tem-
perature, solar radiation, and thermal energy demand, we use copula theory. The
concept of ‘copula’ or ‘copula function’ originated in the context of probabilistic
metric spaces through the well-known Sklar’s theorem (Sklar, 1959) whose prob-
abilistic interpretation states that every joint distribution function F (·) can be
expressed in terms of i) p marginal distribution functions Fj(Xj), with Xj con-
tinuous random variable and j = 1, . . . , p, and ii) the copula distribution function
C(·) : [0, 1]p → [0, 1] as follows:

F (X1, . . . , Xj , . . . , Xp) = C(F1(X1), . . . , Fj(Xj), . . . , Fp(Xp)). (2)

Hence, copula is a p-dimensional cumulative distribution function (CDF hereafter)
with standard uniform margins Fj(·) ∼ U(0, 1) (Trivedi and Zimmer, 2005; Nelsen,
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2006; Durante and Sempi, 2015, for details). The great theoretical and practical
potentiality of the copula is evident when the joint density function is derived as
follows:

f(X1, . . . , Xj , . . . , Xp) = c(F1(X1), . . . , Fj(Xj), . . . , Fp(Xp))

p∏
j=1

fj(Xj) (3)

where c(U1, . . . , Uj , . . . , Up) =
∂pC(U1,...,Uj ,...,Up)
∂U1...∂Uj ...∂Up

is the copula density associated

with a copula C(U1, . . . , Uj , . . . , Up) and fj(·) with j = 1, . . . , p are the univariate
margins. According to Sklar’s theorem, any joint probability function f(·) can
be split into two parts that are independent of each other: i) the copula c(·),
which expresses the association among variables, e.g., the multivariate dependence
structure of a joint density function, and ii) the univariate marginal densities fj(·),
with j = 1, . . . , p. Such separation affects the log-likelihood function of f(·), which
is composed of two positive terms as follows:

l(θ) =
n∑
i=1

log c (F1 (x1i) , . . . , Fj(xji), . . . , Fp (xpi) ;θ) +
n∑
i=1

p∑
j=1

log fj (xji) (4)

for all real vectors (xj1, . . . , xji, . . . , xjn) with j = 1, . . . , p. In Eq. (4) the first term
includes the copula density and its parameters θ, and the second the marginal
densities and their parameters and it is valid. Hence, it is possible to decompose
the estimation problem into two steps and combine different estimation meth-
ods, gaining high flexibility in the modelling. To estimate the copula function,
we use the two-step sequential maximum likelihood estimation method (Joe and
Xu, 1996) in its semi-parametric version (Genest et al., 1995). Thus, the marginal
parameters are estimated in the first step and then used to estimate the depen-
dence parameter of the copula function in the second step. Here we model margins
through the empirical CDF F̂j (xji) computed from xj1, . . . , xjn, with j = 1, . . . , p
and multiplied by n/(n+1) to avoid problems at the boundary of [0, 1]p. Then, we
estimate the copula parameter through the pseudo-likelihood approach as follows:

θ̂ = arg max
θ

n∑
i=1

log c
{
u1i, . . . , uji, . . . , upi;θ

}
(5)

where ûji = nF̂j(xji)/(n+1) and is equivalent to ûji = rji/(n+1) where rji is the
rank of xji among xj1, . . . , xjn, with j = 1, . . . , p.

As for the kind of copula model, we focus on the one hand on copulas with a
single parameter such as the Clayton and Gumbel copulas that capture asymmetric
(respectively, left or right tail) dependence, and the Joe, Gaussian, and Student-t
copulas that capture symmetric dependence with different tail heaviness. On the
other hand, we use the Gaussian and Student-t copulas with unstructured corre-
lation matrix to differently model the strength of each bivariate relationship. We
also take into consideration the flipped versions of the Clayton, Gumbel, and Joe
copulas (see Brechmann and Schepsmeier (2013)) to correctly model the relation-
ship among the phenomena under investigation. Specifically, in accordance with
the analysed data, we work with the following three-dimensional flipped copulas
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obtained by replacing some of the original random variables with a countermono-
tonic counterpart:

C001(U1, U2, 1− U3) = C(U1, U2)− C(U1, U2, 1− U3) (6)

C110(1− U1, 1− U2, U3) = U3 − C(1− U1, 1− U2, U3) (7)

where C000(·) = C(·) is the copula given in Eq. (2) with p = 3 and the zero (one)
subscript indicates a non-flipped (flipped) axis.

Moreover, given the difficulty of capturing diverse and more complex patterns
of dependence structures through a single copula model, copula mixtures can be
used. A mixture copula Cmix(·) is a finite linear combination of several copu-
las (Vrac et al., 2012) that can be written as follows:

Cmix (U,θ,π) =
K∑
k=1

πkCk(U;θk) (8)

where {C1(·), . . . , Ck(·), . . . , CK(·)} is the set of candidate copulas with a vector of
unknown dependence parameters θ = (θ1, . . . ,θk, . . . ,θK) and the p-dimensional
marginal distribution U = (U1, . . . , Uj , . . . , Up), and π = (π1, . . . , πk, . . . , πK) is
the vector of weights, called mixing coefficients, such that 0 ≤ πk ≤ 1,∀k with
k = 1, . . . ,K and

∑K
k=1 πk = 1. In Eq. (8), both the copula parameters θ and the

weights π control the shape of the mixture copula’s dependence structure. As for
the estimation of the mixture copula model in Eq. (8), following Hu (2006), we
use the two-step semi-parametric estimation method described above into the EM
algorithm (Dempster et al., 1977), which makes it possible to maximize the log-
likelihood of the copula in Eq. (8). Specifically, the EM algorithm is an iterative
procedure and each iteration is guaranteed to increase the log-likelihood and to
converge to a local maximum. For our mixture copula model, the EM algorithm
can be summarized as follows:

– initialize π and θ by setting the π̂0 = (π̂01 , . . . , π̂
0
k, . . . , π̂

0
K) and θ̂0 = (θ̂01 , . . . , θ̂

0
k , . . . , θ̂

0
K)

values respectively, and evaluate the initial value of the log-likelihood in Eq. (4)
as written for the copula in Eq. (8);

– E-step: evaluate the mixing coefficients, i.e., the posterior probabilities, using
the current parameter values:

π̂newk =
n∑
i=1

π̂0kck
{
u1i, . . . , uji, . . . , upi; θ̂

0
k

}∑K
k=1 π̂

0
kck

{
u1i, . . . , uji, . . . , upi; θ̂0

k

}
by varying k in {1, . . . ,K};

– M-step: re-estimate the copula dependence parameters using the current mix-
ing coefficients

θ̂new = arg max
θ

n∑
i=1

log
K∑
k=1

π̂newk ck
{
u1i, . . . , uji, . . . , upi;θk

}
where θ̂new = (θ̂new

1 , . . . , θ̂new
k , . . . , θ̂new

K );
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– evaluate the log-likelihood in Eq. (4) for the mixture model in Eq. (8) and
check for convergence of the log-likelihood. If the convergence criterion is not
satisfied, i.e., the change of the maximized log-likelihood of the mixture copula
in the last iteration is greater than 1e − 08, return to the E-step and store
θ̂new → θ̂0 and π̂newk → π̂0k, ∀k = 1, . . . ,K .

The components of a mixture copula model can potentially vary among any kind
of copula model, providing huge flexibility and enabling defining new multivariate
copula models. For a review of copula models see Nelsen (2006); Zimmer and
Trivedi (2006); Durante and Sempi (2015).

According to the copula model, the value of the dependence parameter has a
specific meaning. However, for all the copulas considered here, there is an ana-
lytical relationship between the copula dependence parameter and Kendall’s rank
correlation coefficient τ , which is a scale-invariant measure of association and use-
ful to obtain a normalized “degree of association” between two continuous random
variables with a specified copula (Durante and Sempi, 2015). Hence, the greater
the value of Kendall’s τ , the stronger the association among the margins. To
specify and select the ‘best’ copula model, following Patton (2012), we perform
the leave-one-out cross-validation method (CV hereafter) for copulas (Grønneberg
and Hjort, 2014), and then employ the well-known Akaike information criterion
(AIC hereafter) as well as the logarithm of the maximized likelihood function of
the estimated copula model (LL hereafter).

Since we are interested in investigating the complex relationship between ther-
mal energy demand and meteorological variables with the final aim of investigating
demand given weather scenarios, we introduce the following conditional distribu-
tion function:

P (Xj > xj |X1 < x1, . . . , Xj−1 < xj−1, Xj+1 < xj+1, . . . , Xp < xp) =

= 1−
C(F1(x1), . . . , Fj(xj) . . . , Fp(xp))

C(F1(x1), . . . , Fj−1(xj−1), Fj+1(xj+1) . . . , Fp(xp))
(9)

= 1− C(Fj(xj)|F (x1), . . . , F (xj−1), F (xj+1), . . . , F (xp))

where (x1, . . . , xj , . . . , xp) is a vector of values in the domain of the variables
(X1, . . . , Xj , . . . , Xp), C(Fj(xj)|F (x1), . . . , F (xj−1), F (xj+1), . . . , F (xp)) is the value
of the conditional copula defined using Bayes’ rule (see Zimmer and Trivedi (2006)),
and the copula C(·) can be any kind of copula model, e.g. flipped copula, mixture
copula etc.

5 Empirical analysis

Here we study the pre-processed dataset described in Section 3 using the method-
ology explained in Section 4. Hence, we model thermal energy demand, outdoor
temperature, and solar radiation separately using the SARIMA model. We then
analyse the dependence among the residual of the marginal models through the
three-dimensional copula families. Given the meteorological variables, we investi-
gate TED through a conditional copula function.
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5.1 Marginal modelling

Since the aim of this section is to obtain uncorrelated residual time series, we
separately model the three time series using the Box-Jenkins procedure. First, we
check the non-stationarity of the time series with the autocorrelation and partial
autocorrelation functions at lag 1, · · · , 60. The middle column of Fig. 4 shows the
autocorrelation functions, suggesting the non-stationarity in mean of the three
series. In particular, the OT and SR show a negative linear trend (upper and
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Fig. 4 Plot of time series, autocorrelation function and partial autocorrelation function of
OT in ◦C (upper panel), SR in W/m2 (middle panel) and TED in MWh (lower panel).

middle panel of Fig. 4), whereas TED presents a negative linear trend and a
seasonal weekly trend (lower panel of Fig. 4). To remove non-stationarity, we
apply the difference operator with d = 1 to OT and SR, and both the difference
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Table 2 Estimated Spearman’s correlation coefficient ρ̂s between each pair of the OT, SR,
and TED residual time series, and the p-value of the corresponding test.

OT and TED SR and TED OT and SR

ρ̂s −0.569 −0.201 0.159
p-value < 0.0001 < 0.0001 0.0002

operator with d = 1 and the seasonal difference operator with D = 1, s = 7 to
TED, respectively.

Based on the autocorrelation and partial autocorrelation of stationary time
series (see Fig. 5), we identify the following ARIMA(0, 1, 4), ARIMA(1, 1, 1), and
SARIMA(0, 1, 1)(0, 1, 1)7, for OT, SR, and TED, respectively:

∇1ZOT
t = (1 + 0.093B + 0.139B2 + 0.162B3 + 0.110B4)εt (10)

(1− 0.277B)∇1ZSR
t = (1 + 0.791B)εt (11)

∇1∇1
7Z

TED
t = (1 + 0.1B)(1 + 0.771B7)εt (12)

whose coefficients and residuals are successfully tested through the Student-t and
the Ljung-Box test, respectively. The uncorrelated residuals of the estimated mod-
els enable capturing the serial dependence of the original correlated time series.
Before jointly analysing the considered residual time series, we investigate their
pairwise relationship. Tab. 2 and Fig. 6 present the estimated Spearman’s corre-
lation coefficient ρ̂s of each pair of variables and their scatter plot, respectively,
confirming the presence of association between the variables and, in particular,
asymmetry and non linearity behaviours.

5.2 Joint dependence modelling

As reported in Section 4, the multivariate dependence among the OT, SR, and
TED series of residuals is analysed through the copula function. U1, U2, and U3 are
uniform variables obtained from the probability integral transform of the residual
OT, SR, and TED, respectively. The extreme value copula function is tested us-
ing the Kojadinovic et al. (2011) and Rémillard and Scaillet (2009) tests, both
rejecting the null hypothesis of the extreme value copula. Thus, we work on the
Elliptical and Archimedean families and Joe copulas. We thus estimate symmetric
copulas (Gaussian and Student-t) and asymmetric copulas (Clayton, Gumbel, and
Joe) taking into account the negative association between residuals of TED and
both residuals of OT and SR, and the positive association between OT and SR.
As noted by a referee, the different behaviours of each pair of considered variables
can be captured when a more flexible copula model is used. Hence, we estimate
unstructured Gaussian and Student-t copulas as well as copula mixtures.

Specifically, we estimate the 10 previously introduced copula models with the
pseudo-maximum likelihood method, and select the best one based on the selection
model criteria LL, AIC, and CV defined in Section 4. Tab. 3 shows the estimation
results of the three-dimensional copula models considered. According to all the se-
lection model criteria, the best copula model is the Student-t with an unstructured
correlation matrix and 13 degree of freedom. Due to the presence of asymmetric
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relationships in our data (see Fig. 3 (right) and Fig. 6), we combine the selected
unstructured Student-t copula with the best asymmetric single parameter copula
model, which is the Clayton with the third axis flipped as given in Eq. (6), i.e.,
Clayton(0,0,1). We estimate a mixture copula with two components that, based
on AIC and CV (see Tab. 3), appears to be very competitive with respect to the
unstructured Student-t copula. Using Eq. (8), the CDF of the selected copula is
as follows:

Ct-Clay
mix (U,θ,π) = π1C

t(U1, U2, U3) + π2C
Clay
001 (U1, U2, 1− U3)

= π1(t3,ν(t−1
ν (U1), t−1

ν (U2), t−1
ν (U3);θt)) + (13)

π2((U
−θClay

1 + U
−θClay

2 − 1)
− 1
θClay − (U

−θClay

1 + U
−θClay

2 + (1− U3)−θClay − 2)
− 1
θClay )
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Table 3 Estimation results: three-dimensional copula models, estimated dependence param-
eters θ̂, and the values of the selection model criteria LL, AIC, and CV.

Copula θ̂ LL AIC CV

Gaussian -0.208 42.63 -83.26 41.47
Unstructured Gaussian (0.199, -0.593, -0.227) 132.24 -258.47 129.04
Student-t -0.206 60.97 -117.94 59.03
Unstructured Student-t (0.185, -0.598, -0.218) 136.28 -264.55 132.19
Clayton(0,0,1) 0.434 74.51 -147.03 73.72
Clayton(1,1,0) 0.389 63.36 -124.73 60.95
Gumbel(0,0,1) 1.234 63.64 -125.27 61.78
Gumbel(1,1,0) 1.230 70.75 -139.50 69.23
Joe(0,0,1) 1.285 42.62 -83.24 40.13
Joe(1,1,0) 1.284 51.41 -100.82 49.50

Student-t–Clayton(0,0,1) mixture 137.49 -260.98 132.01
Student-t component (0.159, -0.647, -0.204)
Clayton(0,0,1) component 0.493
Weights (0.847, 0.153)

where Ct(·) is the unstructured three-dimensional Student-t copula and CClay
001 (·) is

the three-dimensional flipped Clayton copula. Moreover, tp,ν(·) is the standard p-
variate Student-t distribution with ν degrees of freedom (recall that ν controls the
heaviness of the tails), t−1

ν (·) denotes the inverse univariate Student-t distribution
function, θt is the unstructured correlation matrix, and CClay

001 (U1, U2, 1 − U3) =

CClay(U1, U2)− CClay(U1, U2, 1− U3) where CClay(U1, U2) = (U
−θClay

1 + U
−θClay

2 −
1)

1
θClay and CClay(U1, U2, U3) = (U

−θClay

1 + U
−θClay

2 + U
−θClay

3 − 2)
1

θClay are the bi-
variate and three-dimensional Clayton copula density with dependence parameter
θClay (Cherubini et al., 2004), respectively. The selected mixture model has the
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following estimated parameters: θ̂t = (0.159,−0.647,−0.204), number of degrees
of freedom ν = 15, θ̂Clay = 0.493 and (π1 = 0.847, π2 = 0.153), and is thus able
to capture both the symmetric and asymmetric behaviour and take into account
different bivariate relationships. The two-component mixture copula model at-
tributes about 15% of the joint distribution to the flipped Clayton component of
the mixture indicating that upper-left-tail dependence, that is the dependence in
the corner (0,0,1), is both stronger and more prevalent. The unstructured Student-
t copula and the selected mixture copula appear somewhat similar, at least at a
cursory glance. However, they treat tail dependence differently, which can lead
to substantially different probability calculations of tail events that are our main
endpoint, as we will show in the next section (Fig. 10). Fig. 7 presents the contour
plot of the bivariate marginal copula densities of the selected mixture, which as
expected shows the diverse relationships between the considered variables. Fig. 8
on the left shows the scatter plot of the selected copula model.
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Fig. 7 Contour plot of the bivariate marginal copula densities of the selected unstructured
Student-t–Clayton(0,0,1) mixture copula: OT-SR residual time series (left), OT-TED residual
time series (middle), and SR-TED residual time series (right).

5.3 Conditional dependence modelling

Here we study the conditional copula function of thermal energy demand given
the meteorological variables, i.e., outdoor temperature and solar radiation, apply-
ing Eq. (9) to the selected unstructured Student-t–Clayton(0,0,1) mixture copula
model:

P (X3 > x3|X1 < x1, X2 < x2) = 1− P (X3 < x3|X1 < x1, X2 < x2)

= 1− C(F1(x1), F2(x2), F3(x3))

C(F1(x1), F2(x2))

= 1−
Ct-Clay
mix ((u1, u2, u3),θ,π)

Ct-Clay
mix ((u1, u2),θ,π)

(14)

where θ = (θt, θClay), π = (π1, π2), and

Ct-Clay
mix ((u1, u2),θ,π) = π1(t2,ν(t−1

ν (u1), t−1
ν (u2); θt)) + π2(u−θ1 + u−θ2 − 1)−

1
θ .
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Fig. 8 on the right presents the conditional probability in Eq. (14), where u3 ∈ [0, 1]
and u1, u2 = (0.01, 0.05, 0.15, 0.3). Thermal energy demand shows a negative expo-
nential shape. Noteworthy is that the probability of high thermal energy demand
steeply increases when a small change in the meteorological variables is detected,
especially for extreme weather scenarios. As an example, the probability that TED
is greater than its 75th percentile (193.6 MWh) conditional on the 5th percentile
of OT and SR (−1.32◦C and 21 W/m2, respectively) is 0.83, while when the prob-
ability is conditioned on the 1st percentile of OT and SR, which corresponds to a
−2.65◦C and 10 W/m2 of radiation, it increases to 0.92. In addition, when both
the meteorological variables assume values smaller than 0.3 (i.e., OT= 3.44◦C and
SR= 63.3W/m2), the conditional probability distribution of interest appears to be
weakly exponential. Based on the graph in the left part of Fig. 9, we can assert
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Fig. 8 Scatter plot of the selected unstructured Student-t–Clayton(0,0,1) mixture copula: OT
(x-axis), SR (y-axis) and TED (z-axis) (left) residual time series. Copula-based conditional
probability function in Eq. (14): residual TED quantile (x-axis) (right).

that for extreme values of outdoor temperature (U1 < 0.15, 0.797◦C), the effect
of decreasing values of solar radiation on the probability of high thermal demand
appears to be moderate. On the contrary, outdoor temperature, when solar radi-
ation is lower than 0.15, i.e., lower than 39.457W/m2, shows a strong impact of
the probability of high thermal demand (Fig. 9, right part). For example, P (X3 >

x3|X1 < x1, X2 < x2) = P (U3 > 0.75|U1 < 0.15, U2 < 0.01) = 0.80, whereas
P (X3 > x3|X1 < x1, X2 < x2) = P (U3 > 0.75|U1 < 0.01, U2 < 0.15) = 0.90. Hence,
despite the exchangeability of the selected components of the mixture model, the
flexibility of the selected mixture copula enables assessing the different contribu-
tion of the considered meteorological variables. In Fig. 10 we show the divergence
between the conditional copula probability function in Eq. (9) computed for the
two best estimated models (unstructured Student-t and unstructured Student-t–
Clayton(0,0,1) mixture copula) by varying the quantiles of TED residual time series
and for a certain values of U1 and U2. It is evident that the as soon as the meteoro-
logical events become extreme, the behaviour of the two models diverges and the
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Fig. 9 Mixture copula-based conditional probability function in Eq. (14) with U1 < 0.15 (left)
and U2 < 0.15 (right): residual TED quantile (x-axis).

relevance of the flipped Clayton component of the mixture copula clearly emerges.
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6 Discussion

Here we argue the potential usefulness and implications of the statistical mod-
elling procedure proposed in Section 4 and applied to the case of the Italian city
Bozen-Bolzano in Section 5. To do so, we discuss the daily thermal energy pro-
duction (TEP hereafter) of the DHS of Bozen-Bolzano instead of the TED. In
particular, we study the production schedule of the three different production fa-
cilities supplying the DHS of Bozen-Bolzano, i.e., waste to energy (WtE) plant,
combined heat and power (CHP) engines, and traditional natural gas-fed boilers,
taking into consideration their thermal power limits. Since our endpoint is the con-
ditional probability of exceeding the power limits (see Eq. (14)), we derive thermal
energy demand (X3 in Eq. (14)) from thermal energy production by subtracting
the distribution heat losses of 9.4% according to Dalvit (2017). Moreover, due to
missing information on the DHS facilities in the years 2015−2017, we perform the
analysis only on the heating season 2014− 2015.

The WtE plant has a nominal thermal capacity of 32 MW , which is, however,
limited to 14 MW due to the technical characteristics of connection piping be-
tween the pumping station of the DHS and the considered facility. The WtE plant
allows disposing municipal solid waste producing electrical and thermal energy.
Two methane-fed engines instead produce heat and power co-generation with a
total maximum thermal production limit of 3.7 MW . A traditional series of gas-fed
boilers has a capacity limit of 35.5 MW covering the remaining thermal energy
demand. According to the efficiency and sustainability principles, the order of ac-
tivation of the three facilities in the DHS of Bozen-Bolzano is as follows: WtE
plant, CHP engines, and traditional boilers.

Fig. 11 shows the production shares of the DHS facilities in the selected period
of observation. Here we consider the total number of substations (155) instead of
the sample of 110 substations used in the previous empirical analysis, since we are
interested in the performance of the whole DHS of Bozen-Bolzano. Of note is that
WtE shows inconstant behaviour that reflects the intermittent availability of mu-
nicipal solid waste. When there is a lack of WtE, boilers compensate production.
Indeed, boilers are a very important facility, since they cover thermal energy de-
mand when peaks in thermal demand occur and alternative facilities are lacking.
Important to underline is that in October 2016 a new thermal storage tank was
added to the DHS, and the contribution of boilers became less relevant thanks to
the so-called “peak shave” effect. As for CHPs, we note that their contribution
is almost constant over time, and they have a smaller capacity than the other
facilities.

In Fig. 12, we show if and when thermal energy production overcomes the
heat capacity limit of the WtE and CHPs facilities (upper panel), and the cor-
responding weather conditions (two plots in the middle). Our final aim here is
to provide information on the probability of exceeding the capacity limit of the
considered facilities to obtain information on the management of the energy facil-
ities. Note that, to compute Eq. (14) at the production level, the thermal energy
demand model is rescaled to the selected sample of 110 substations, that is, 52%
of total thermal demand. Looking at the days with heat production that exceeds
the WtE plant plus CHPs capacity limit, the corresponding OT and SR values
are, as expected, very low and the corresponding conditional probabilities are high
(grey bands in Fig. 12). Specifically, in those days when OT reaches its minimum
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Fig. 11 Thermal energy production time series according to the type of facility: WtE plant,
CHP engines, traditional boilers, and TEP (in MWh).

value, which is −1.1◦C corresponding to an SR of 64.1W/m2, the probability of
exceeding the production limit of the most sustainable facilities, WtE plant and
CHPs, given in Eq. (14) is 0.73. By comparing this value with that obtained con-
sidering the minimum value of SR, which is 24.6W/m2 corresponding to an OT of
1.71◦C and leading to a conditional probability equals to 0.63, we can confirm the
different contributions of the two considered meteorological variables on thermal
energy production. Interestingly, the two highest peaks of the computed probabil-
ities (0.83 and 0.76 observed on December 27th and December 13th, respectively)
correspond to extreme values of solar radiation (13W/m2 and 9.27W/m2) and
outdoor temperature (−1.65◦C and 0.49◦), as expected, but production values not
exceeding the considered capacity limits, potentially due to the thermal inertia of
the buildings and the so-called calendar effect. As for all the remaining time peri-
ods considered, the probability of exceeding the facility limit of the WtE plant and
CHPs is coherent with the weather conditions and useful to indicate how thermal
energy production should be scheduled.

7 Conclusion

In this study, we have provided a copula-based analysis of thermal energy demand
and meteorological variables concerning the DHS of the Italian city Bozen-Bolzano.
More precisely, using a mixture copula model, we have analysed the complex re-
lationship between energy demand, outdoor temperature, and solar radiation in a
3-year period, and have derived the conditional probability distribution of energy
demand given the weather scenarios. Our main purpose was to provide insights on
the impact of weather on thermal energy demand, especially when unexpected and
unusual climatic events imply sudden and high energy demand. In-depth knowl-
edge of the conditional probability law allows drawing important implications for
planning and efficiently managing the production of energy in a DHS. DHSs play
an important role in sustainable energy systems with a relevant contribution to
reducing climate change.

Our proposed methodology could be extended in several ways. First, a dynamic
copula-based approach could provide further information on the investigated de-
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pendence. Second, it would be interesting to exploit the proposed approach with
weather forecasts to obtain information on the next days production schedule.
Finally, an extension of our research to other countries, which is completely not
trivial, could be useful to provide evidence on the robustness of our results.
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Sklar A (1959) Fonctions de répartition à n dimensions et leures marges. Publica-
tions de l’Institut de Statistique de L’Université de Paris 8:229–231

Soutullo S, Bujedo L, Samaniego J, Borge D, Ferrer J, Carazo R, Heras M (2016)
Energy performance assessment of a polygeneration plant in different weather
conditions through simulation tools. Energy and Buildings 124:7–18, DOI 10.
1016/j.enbuild.2016.04.031

Sun Q, Li H, Ma Z, Wang C, Campillo J, Zhang Q, Wallin F, Guo J (2016) A
comprehensive review of smart energy meters in intelligent energy networks.
IEEE Internet of Things Journal 3(4):464–479

Trivedi PK, Zimmer DM (2005) Copula Modeling: An Introduction for Practition-
ers, vol 1. Foundations and Trends in Econometrics

Vrac M, Billard L, Diday E, Chédin A (2012) Copula analysis of mixture models.
Computational Statistics 27(3):427457

Werner S (2017) International review of district heating and cooling. En-
ergy 137:617–631, DOI 10.1016/j.energy.2017.04.045, URL https://doi.org/10.

https://doi.org/10.1016/j.energy.2017.04.045


Analysing energy demand and weather conditions through mixture copula 25

1016/j.energy.2017.04.045

Woods P, Overgaard J (2016) Historical development of district heating and char-
acteristics of a modern district heating system. In: Advanced District Heating
and Cooling (DHC) Systems, Elsevier, pp 3–15

Zhao Z, Zhang Z (2018) Semiparametric dynamic max-copula model for multi-
variate time series. Journal of the Royal Statistical Society Series B: Statistical
Methodology 80(2):409–432

Zhu Q, Zhao W (2018) Correcting climate model simulations in heihe river using
the multivariate bias correction package. Environmental and ecological statistics
25(3):387–403

Zimmer DM (2012) The role of copulas in the housing crisis. The Review of Eco-
nomics and Statistics 94(2):607–620

Zimmer DM, Trivedi PK (2006) Using trivariate copulas to model sample selection
and treatment effects: Application to family health care demand. Journal of
Business and Economic Statistics 24:6376

https://doi.org/10.1016/j.energy.2017.04.045
https://doi.org/10.1016/j.energy.2017.04.045

	Paper_DLMR_EES_BEMPS.pdf
	Introduction
	District heating system and sustainable energy
	Dataset of the district heating system of Bozen-Bolzano
	Methodology
	Empirical analysis
	Discussion
	Conclusion




