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Abstract This paper reviews different methods to construct density forecasts and
to aggregate forecasts from many sources. Density evaluation tools to measure the
accuracy of density forecasts are reviewed and calibration methods for improving
the accuracy of forecasts are presented. The manuscript provides some numerical
simulation tools to approximate predictive densities with a focus on parallel com-
puting on graphical process units. Some simple examples are proposed to illustrate
the methods.
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1 Introduction

Economic decision in real time are made under a high degree of uncertainty. One of
the prominent feature of this uncertainty is that relevant information is missing at
the moment of the decision. This requires to build forecasts to try to track the future
evolution of the economic processes and to inform decision-makers. Researchers
recognized the fundamental importance of forecasts a long time ago; but the focus
was mainly on point forecasting. Point forecasting is often associated to the mean of
a distribution and it is optimal for highly restricted loss functions, such as quadratic
loss function. More generally, the value of a point forecast can be increased by
supplementing it with some measure of uncertainty and complete probability dis-
tributions over outcomes provide information helpful for making economic deci-
sions; see, for example, Anscombe (1968) and Zarnowitz (1969) for early works
and the discussions in Granger and Pesaran (2000), Timmermann (2006) and Gneit-
ing (2011). Recently, probabilistic forecasts in the form of predictive probability
distributions have become prevalent in various fields, including macro economics
with routine publications of fancharts from central banks, finance with asset allo-
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cation strategies based on higher-order moments, and meteorology with operational
ensemble forecasts of future weather Tay and Wallis (2000), Gneiting and Katzfuss
(2014). For example in central bank forecasting, the Bank of England, Norges Bank,
Sveriges Riksbank publish so-called fan charts for macroeconomic variables such
as inflation and GDP growth.

This paper reviews several methods to construct density forecasts for parametric
models. The first method assumes a distribution for the errors and ignore parameter
uncertainty; the second method, bootstrapping, accounts for parameter and error
uncertainties in a frequentist environment; and the third method relies on Bayesian
inference. The three methods rely on different assumptions. We describe them in the
case of the simple linear regression models and provide tools to extend the analysis
to more complex models. We also discuss density combinations as a tool to deal
in the case there are several density forecasts and an a priori selection is difficult.
And we provide some evaluation tools to measure the accuracy of density forecasts,
accounting for the fact that the “true” density forecast is never observed, even ex
post.

Moreover, in order to cope with the fact that relevant information is missing
at the moment of decision, several papers (e.g., see Stock and Watson, 1999, 2002,
2005, 2014, and Bańbura et al., 2010) suggest to forecast with large sets of data. The
recent fast growth in (real-time) big data allows researchers to forecast variables of
interest more accurately (e.g., see Choi and Varian, 2012; Varian, 2014; Varian and
Scott, 2014; Einav and Levin, 2014). Stock and Watson (2005, 2014), Bańbura et al.
(2010) and Koop and Korobilis (2013) suggest that there are also potential gains
from forecasting using a large set of forecasts. However, forecasting with large data
sets including many forecasts and high-dimensional models requires new modelling
strategies, efficient inference methods and extra computing power possibly resulting
from parallel computing. We refer to Granger (1998) for an early discussion of these
issues. In the application, we propose Graphical Processor Units (GPUs) as a tool
to reduce computation time based on massively parallel computation and review the
GPU computing functions introduced in the MATLAB parallel computing toolbox
to reduce the steep learning curve of a dedicated programming language.

The structure of the paper is organized as follows. Section 2 presents the different
methods to compute density forecasts. Section 3 describes density combinations and
section 4 proposes different methods for density evaluation. Section 5 introduces
GPU computing and applies to examples based on Monte Carlo (MC) simulations
and an accept-reject algorithm to compute density. Section 6 concludes.

2 Computing Density Forecasts

This section reviews several methods to construct density forecasts. We discuss
methodologies applied to a simple linear regression model:

yt = x′tβ + εt , t = 1, . . . ,T, εt ∼ i.i.d.(0,σ2) (1)
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where θ = (β ,σ2) is a ((m+ 1)× 1) vector of parameters; β a (m× 1) vector of
coefficients; σ2 the variance of the error term εt ; and xt is a (m×1) vector of covari-
ates, which can include exogenous variables zt and lagged values of the dependent
variable, yt−p, p > 0.

We present three methods to deal with constructing density forecasts: assume a
distribution for the errors and ignore parameter uncertainty; bootstrapping for ac-
counting for parameter and error uncertainties in a frequentist environment; and
Bayesian inference. The three methods rely on different assumptions. The first one
requires to specify a distribution for a given model; the second one requires some
assumptions and can be applied to any model that respects such assumptions; the
third one requires prior information that are usually model dependent.

2.1 Distribution assumption

The easiest method to compute a density forecast is to assume a given distribution
for the error term, e.g. εt ∼N(0,σ2) in (1), and to ignore parameter uncertainty. The
h−step ahead density prediction, with h > 1, conditional to information available up
to time T , DT , results to:

f (yT+h|DT ) = N(x′T+hb,s2) (2)

where b = (X
′
X)−1X

′
y, with y = (y1, · · · ,yT )

′
a (T ×1) vector, X = (x1, · · · ,xT )

′
a

(T ×m) matrix, and s2 = e′e/(T −m), with e = (y−Xb). In the linear model (1)
there is a closed form solution accounting for parameter uncertainty, see for example
Hansen (2006). Simple modifications of that model have also closed form solution.
For example, Clements and Galvao (2014) show how to compute the variance of the
MIDAS predictive density to also account for parameter uncertainty.

The expression in (2) requires to know xT+h. This is possible only in limited cases
where the data generating process of X is known. In most cases, in particular when xt
includes also lags of yt , this condition is not valid. There are several options to deal
with it. For example, xT+h can fixed to include only information up to time T , that
is xT is a function of exogenous (z1, . . . ,zT ) and lagged dependent (yT , . . . ,yT−p)
variables. This strategy is often called direct forecasting and regressors in (1) should
be changed accordingly. Otherwise, the system can be iterated to produce future
values, that is xT+ j is computed conditional on xT+ j−1 for j = 1, . . . ,h.

A special case is when xt contains only lags of yt . The density forecasts changes
expression. The variable yt can be expressed as a function of past errors and initial
values as

yt =
t−1

∑
j=0

φ jεt− j +π, εt ∼ i.i.d.N(0,σ2),
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where π summarizes the initial conditions. Assuming that the past errors and coef-
ficients are known, the conditional expectation corresponds to the point forecast

yT+h =
T−1

∑
j=h

φ jεT+h− j +bπ0,

and the forecast error is ∑
h−1
j=0 φ jεt+h− j. It follows that the forecast error variance

is given by s2(h) = σ2
∑

h−1
j=0 φ 2

j . The predictive density is therefore normally dis-
tributed with mean given by the usual point forecast and variance given by the above
expression, N(x′T+hb,σ2(h)).

2.2 Bootstrapping

Ignoring parameter and distribution uncertainties can be very costly, in particular
for small sample sizes and when the error distribution is not Gaussian, see Pascual
et al. (2001). A solution to it is to apply a bootstrapping approach. The bootstrapping
procedures are distribution-independent and account for parameter uncertainty.

Earlier studies in economics have mostly focused on bootstrapping in linear re-
gressions and univariate autoregressions, see e.g., Berkowitz and Kilian (2000) and
Clements and Taylor (2001). More recently, bootstrapping procedures for more ad-
vanced models have been proposed. These include models that deal with a large
amount of data such as factor models, see e.g., Goncalves and Perron (2014), Djog-
benou et al. (2015), Djogbenou et al. (2017), models with mixed frequency infor-
mation, see Aastveit et al. (2014) and Mixed Data Sampling (MIDAS) models, see
Aastveit et al. (2016).

2.2.1 A residual-based bootstrapping of density forecasts

We first consider a parametric residual-based bootstrap to derive forecast densities,
accounting for both parameter and shock uncertainty as in Berkowitz and Kilian
(2000) and Clements and Taylor (2001). The bootstrap procedure relies on the algo-
rithm in Davison and Hinkley (1997) (Section 7.2.4) for prediction in generalized
linear models. The residual-based bootstrap is valid under the following assump-
tions:

(A1) εt are i.i.d. with E(εt) = 0, E(ε2
t ) = σ2 with σ2 < ∞, and E(ε2(s+1)

t ) < ∞ for
s≥ 3.

(A2) (ε1,ε
2
1 ) satisfies Cramer’s condition, i.e., for every d > 0, there exists δ such

that sup||t||>d |E exp(it ′(ε1,ε
2
1 ))| ≤ exp(−δ ).

(A3) x(m)
tm+w−hm

are exogenous fixed variables.
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(A4) The process is stationary.

The steps conducted in the residual-based bootstrap are as follows.

1. Estimate equation (1), and obtain b.
2. For r = 1, . . . ,R, simulate ỹr,t = xtb + ẽr,t , where ẽr,t is resampled from ět ≡( n

n−k

)0.5 et .
1

3. Re-estimate (1) for each ỹr,t , and obtain ỹr,T+h, where the shock uncertainty is
included by resampling from ět .

Davison and Hinkley (1997) fix the value of yT equal to the value of the original
series.

In practice, R vectors of pseudo-random numbers are generated to replicate the
same properties of the residuals of the model, via the bootstrapping technique. For
each r = 1, . . . ,R replications, a new set of simulated data is generated, and a new
forecast ỹr,T+h is obtained. The empirical distribution of

{
ỹr,T+h

}R
r=1 is then our

density.
If the error terms in equation (1) are independent and identically distributed with

common variance, then we can generally make very accurate inferences by using the
residual bootstrap. Given the assumptions (A1)-(A4), Davison and Hinkley (1997)
discuss how the method is a generalization of the bootstrapping algorithm for linear
models and Bose (1988) provides proofs of its convergence.2

2.2.2 Accounting for autocorrelated or heteroskedastic errors

One limitation of the standard residual-based bootstrapping method above is that it
treats the errors as i.i.d. The i.i.d. assumption does not follow naturally from eco-
nomic models, and in many empirical applications the actual data are not well repre-
sented by models with i.i.d. errors, see e.g. Goncalves and Kilian (2004) and David-
son and MacKinnon (2006). Typically, economic and financial variables exhibit ev-
idence of autocorrelation and/or conditional heteroskedasticity. In these cases, as-
sumption (A1) is violated and the residual-based bootstrap is not valid.

Block bootstrap methods, suggested by Hall (1985) and Kunsch (1989), account
for autocorrelated errors. The block bootstrap divides the quantities that are being
re-sampled into blocks of b consecutive observations. The blocks can be either over-
lapping or non-overlapping, nevertheless Andrews (2002) finds small differences in
performance between the two methods.

The wild bootstrap suggested by Wu (1986) and Liu (1988) is specifically de-
signed to handle heteroskedasticity in regression models. Goncalves and Kilian
(2004) have also shown that heteroskedasticity is an important feature in many

1 Davidson and MacKinnon (2006) suggest to rescale the residuals so that they have the correct
variance by ět ≡

( n
n−k

)0.5 êt .
2 Bose (1988) focuses on linear AR models with imposed stationarity (see assumption (A4) above).
For an extension accounting for a possible unit root, see Inoue and Kilian (2002).
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macroeconomic and financial series and apply the wild bootstrap to autoregressive
models.

2.2.3 A block wild bootstrapping of density forecasts

To account for both autocorrelation and heteroskedasticity at the same time, we
suggest using a block wild bootstrap, first proposed by Yeh (1998). Djogbenou et al.
(2015, 2017) have recently proposed adapting the block wild bootstrap to the case
of factor models and Aastveit et al. (2016) to to MIDAS models. Non-overlapping
blocks of size nT of consecutive residuals are formed. Assume that (T−h)/nT = kT ,
where kT is an integer and denotes the number of blocks of size nT . For l = 1, . . . ,bT
and j = 1, . . . ,kT , we let

y∗( j−1)nT+l+h = x( j−1)nT+lb+ e∗( j−1)nT+l+h, (3)

where
e∗( j−1)nT+l+h = ě( j−1)nT+l+h ·ν j. (4)

There are various ways to specify the distribution of ν j. Davidson and Flachaire
(2008) assume that ν j is a Rademacher random variable

ν j =

{
1 with probability 1/2
−1 with probability 1/2 (5)

Davidson and Flachaire (2008) study the wild bootstrap in the context of regres-
sion models with heteroskedastic disturbances and find that, among several popular
candidates, this has the most desirable properties.

By replacing step 2 and 3 in the residual-based bootstrap above with the block
wild bootstrap it is possible to accommodate both serial correlation and heteroskedas-
ticity in ẽr,t . Djogbenou et al. (2017) set the block size equal to h.

2.3 Bayesian inference

A different approach to construct density forecasts rely on Bayesian inference.
Bayesian analysis formulates prior distributions on parameters that multiplied by
the likelihood results on parameter posterior distributions. Accounting for the un-
certainty on parameter posterior distribution, future probabilistic statements derive
without any further assumption. Moreover, prior distributions allow to impose re-
strictions on the parameters if useful and necessary. However, a user must specify
prior statements before to start the analysis.

As example, we present the main derivation for model (1). The objective of
Bayesian inference is to compute a predictive density:
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f (yT+h|DT ) =
∫

p(yT+h,XT+h,θ |DT )dθ =
∫

l(yT+h|XT+h,θ ,D
T )p(θ |DT )dθ

(6)
where DT = (Y,X ,XT+h) is the information set, l(yT+h|XT+h,θ) is the likelihood of
the model for time T +h, p(θ |DT ) is the parameter marginal distribution computed
with information up to time T .

Regarding the choice of the prior distribution, if the prior is conjugate then
the posterior and the predictive distribution can be computed analytically. If non-
conjugate priors are used, then posterior and predictive are in integral form and
need to be evaluated by means of numerical methods such as Monte Carlo simula-
tion methods. In the regression model, in practice one usually defines τ = 1/σ2 and
assumes a conjugate normal-gamma prior:

β |τ ∼ N(β ,τ−1V ), τ ∼ G(s−2,ν), β ,τ ∼ NG(β ,V ,s−2,ν)

where β , V , s−2 and ν are parameters of the normal and gamma prior distri-
butions. Define V = (V−1 + X ′X)−1, β = V (V−1β + bX ′X), ν = ν + T , νs2 =

νs2 + νs2 + (b− β )′(V + (X ′X)−1)−1(b− β ), νs2 = (y−Xb)′(y−Xb), the con-
ditional posteriors of β given σ2 and σ2 given β are:

p(β |τ,y)∼ N(β ,τ−1V ), p(τ|β ,y)∼ G(νs2,ν)

See Koop (2003). The target is the marginal posterior distribution, that has a closed-
form solution for model (1) and Normal-gamma priors:

β |DT ∼ t(β ,s2V ,ν)

τ|DT ∼ G(νs2,ν−2)

The conditional and marginal predictive densities have also a closed-form solution,
see Koop (2003):

f (yT+h|β ,σ ,DT ) ∼ N(XT+hβ ,s2X̃ ′X̃) (7)
f (yT+h|DT ) ∼ t(XT+hβ ,s2(IT + X̃V X̃),ν) (8)

As in the normal and bootstrapping cases, computation is more complex when XT+h
is not available at time T and direct forecasting is avoided. The algorithm in (6)
generalizes to:

f (yT+h|DT ) =
∫

l(yT+h|XT+h,θ)p(XT+h|XT ,θ)p(θ |DT )dθ (9)

Closed-form solutions do not exist for most of economic models, but simulation
methods can be used to compute the integral and derive the marginal predictive
density. Assume a set of random samples θr, r = 1, . . . ,R from p(θ |DT ) is available,
then the predictive density in equation (9) can be approximated as follows
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f̂R(yT+h|DT ) =
1
R

R

∑
r=1

l(yT+h|XT+h,θr)p(XT+h|XT ,θr). (10)

See Section 5 for an introduction to simulation methods.

3 Density combinations

When multiple forecasts are available from different models or sources it is possible
to combine these in order to make use of all relevant information on the variable to
be predicted and, as a consequence, to produce better forecasts. This is particular
important when working with large database and selection of relevant information a
priori is not an easy task. Early papers on forecasting with model combinations are
Barnard (1963), who considered air passenger data, and Roberts (1965) who intro-
duced a distribution which includes the predictions from two experts (or models).
This latter distribution is essentially a weighted average of the posterior distributions
of two models and is similar to the result of a Bayesian Model Averaging (BMA)
procedure. See Raftery et al. (1997) for a review on BMA, with a historical perspec-
tive. Raftery et al. (2005) and Sloughter et al. (2010) extend the BMA framework
by introducing a method for obtaining probabilistic forecasts from ensembles in the
form of predictive densities and apply it to weather forecasting. McAlinn and West
(2018) extend it to Bayesian predictive synthesis.

Bates and Granger (1969) deal with the combination of predictions from different
forecasting models using descriptive regression. Granger and Ramanathan (1984)
extend this and propose to combine forecasts with unrestricted regression coeffi-
cients as weights. Terui and van Dijk (2002) generalize the least square weights by
representing the dynamic forecast combination as a state space with weights that
are assumed to follow a random walk process. Guidolin and Timmermann (2009)
introduce Markov-switching weights, and Hoogerheide et al. (2010) propose ro-
bust time-varying weights and account for both model and parameter uncertainty
in model averaging. Raftery et al. (2010) derive time-varying weights in “dynamic
model averaging”, following the spirit of Terui and van Dijk (2002), and speed up
computations by applying forgetting factors in the recursive Kalman filter updating.

A different line was started by Ken Wallis in several papers, see for example
Wallis (2003), Wallis (2005), Wallis (2011) and Mitchell and Wallis (2011). Here
the use of the full predictive distribution is proposed when forecasting. Benefits
and problems related to it are discussed in detail. One focus has been to measure
to the importance of density combinations. Hall and Mitchell (2007) introduce the
Kullback-Leibler divergence as a unified measure for the evaluation and suggest
weights that maximize such a distance, see also Amisano and Geweke (2010) and
Geweke and Amisano (2011) for a compresive discussion on how such weights
are robust to model incompleteness, that is the true model is not included in the
model set. Gneiting and Raftery (2007) recommend strictly proper scoring rules,
such as the cumulative rank probability score. Billio et al. (2013) develops a general
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method that can deal with most of issues discussed above, including time-variation
in combination weights, learning from past performance, model incompleteness,
correlations among weights and joint combined predictions of several variables. See,
also Waggoner and Zha (2012), Kapetanios et al. (2015), Pettenuzzo and Ravazzolo
(2016), Aastveit et al. (2018) and Del Negro et al. (2016).

We refer to Aastveit et al. (2019) for a recent survey on the evolution of forecast
density combinations in economics. In the following we provide some details on two
basic methodologies, the Bayesian Model Averaging (BMA) and the linear opinion
pool (LOP), and discuss briefly some extensions.

3.1 Bayesian model averaging

Let DT be the set of information available up to time t, then BMA combines the in-
dividual forecast densities f (YT+h|DT ,M j), i = 1, . . . ,N, into a composite-weighted
predictive distribution f (YT+h|DT ) given by

f (YT+h|DT ) =
N

∑
j=1

P
(

M j
∣∣DT ) f (YT+h|DT ,M j) (11)

where P
(

M j
∣∣DT

)
is the posterior probability of model j, derived by Bayes’ rule,

P
(

M j
∣∣DT )= P

(
DT
∣∣M j

)
P(M j)

∑
N
j=1 P(DT |M j)P(M j)

, j = 1, . . . ,N (12)

and where P(M j) is the prior probability of model M j, with P
(
DT
∣∣M j

)
denot-

ing the corresponding marginal likelihood. We shall notice that the model posterior
probability can be written in terms of Bayes factors

P
(

M j
∣∣DT )= α jB1 j

∑
N
j=2 α jB1 j

(13)

where α j = P(M j)/P(M1) and B1 j = P
(
DT
∣∣M j

)
/P
(
DT
∣∣M1

)
, j = 2, . . . ,N are the

Bayes factors. An alternative averaging weighting scheme can be define by using the
predictive distributions:

P
(

M j
∣∣DT )= P

(
YT |DT−1,M j

)
P(M j)

∑
N
j=1 P(YT |DT−1,M j)P(M j)

, j = 1, . . . ,N. (14)
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3.2 Linear opinion pool

LOP gives a predictive density f (yT+h|DT ) for the variable of interest to be pre-
dicted at horizon T +h with h > 0, yT+h, using the information available up to time
T , DT , from a set of predictions generated by the models M j, j = 1, . . . ,N.

f (yT+h|DT ) =
N

∑
j=1

w j,T+h f (yT+h|DT ,M j) (15)

where w j,T+h is the (0,1)-valued weight given to model M j computed at time T and
f (yT+h|DT ,M j) is the density forecast of yT+h conditional on predictor M j, and
on the information available up to time T . The individual prediction can be model
based, parametric or non-parametric, or individual subjective predictions. Each of
these predictive densities must be non-negative for all the support of yT+h and their
cumulative density functions must add to 1. To guarantee that the combined forecast
density f (yT+h) also satisfies these features, some restrictions can be imposed to the
combination weights w j,T+h, j = 1, . . . ,N. Sufficient conditions are that weights are
non-negative, w j,T+h ≥ 0, j = 1, . . . ,N, and that add to unity, ∑

N
j=1 w j,T+h = 1.

Standard practice, see for example Hall and Mitchell (2007), Kascha and Ravaz-
zolo (2010) and Mazzi et al. (2014), is to use the cumulative log score, see equation
(26). The combination weights are computed as

wLS
j,T+h =

exp(ηLS
j,T )

∑
N
j=1 exp(ηLS

j,T )
(16)

where ηLS
j,T is the cumulative log score for model M j at time T . We note that at

time T when predictions are made, the cumulative log score can be computed up
to the same time and therefore weights are based on the statistic ηLS

j,T , j = 1, . . . ,N.
Such statistic contains information on how the predictor M j associated to prediction
f (yT+h|DT ,M j) has performed in the past in terms of forecasting. Therefore, the
major difference between LOP and BMA is in weights definition. In LOP, weights
are computed using some statistics; in BMA weights depend on model posterior
probabilities.

3.3 Generalized opinion pool

Following the notation used in Gneiting and Ranjan (2013b), it is possible to de-
fine a general pooling method as a parametric family of combination formulas. Let
FjT (yT+h) = F(T+h|DT ,M j) denote the cdf of the density f (yT+h|DT ,M j), a gen-
eralized pool is a map
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H :
[
×NF →F
(F1T (·), · · · ,FNT (·)) 7→ F(·|ξ ,DT ) = H(F1T (·), . . . ,FNT (·),ξ )

indexed by the parameter ξ ∈ Ξ , where Ξ is a parameter space and F is a suitable
space of distributions. Following (see DeGroot and Mortera, 1991; DeGroot et al.,
1995) we consider pooling scheme of the form:

H(F1T (·), . . . ,FNT (·),ξ ) = ϕ
−1

(
N

∑
j=1

ω jϕ(FjT (·)

)
(17)

where ϕ is a continuous increasing monotone function with inverse ϕ−1 and ξ =
(ω1, · · · ,ωN)

′ is a vector of combination weights, with ω1+ . . .+ωN = 1 and ω j ≥ 0,
for all i. If ϕ(x) = x then we obtain the Linear Opinion Pool

F(yT+hvertDT ,ξ ) =
N

∑
j=1

ω jF(yT+h|DT ,M j) (18)

The harmonic opinion pool is obtained for ϕ(x) = 1/x

F(yT+h|DT ,ξ ) =

(
N

∑
j=1

ω jF(yT+h|DT ,M j)
−1

)−1

(19)

whereas by choosing ϕ(x) = log(x) one obtains the logarithmic opinion pool

F(yT+h|DT ,ξ ) =
N

∏
j=1

F(yT+h|DT ,M j)
ω j . (20)

If ϕ is differentiable then the generalized combination model can be re-written in
terms of pdf as follows

f (yT+h|DT ,ξ ) =
1

ϕ ′(F(yT+h|DT ,ξ ))

N

∑
j=1

ω jϕ
′(F(y|DT ,M j)) f (y|DT ,M j) (21)

where ϕ ′ denotes the first derivative of ϕ . The related density functions are:

f (yT+h|DT ,ξ ) =
N

∑
j=1

ω j f (yT+h|DT ,M j)

f (yT+h|DT ,ξ ) = F(yT+h|DT ,ξ )2
N

∑
j=1

ω jF(yT+h|DT ,M j)
−2 f (yT+h|DT ,M j)

f (yT+h|DT ,ξ ) = F(yT+h|DT ,ξ )
N

∑
j=1

ω jF(yT+h|DT ,M j)
−1 f (yT+h|DT ,M j)
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for the linear opinion pool, harmonic opinion pool and logarithmic opinion pool, re-
spectively. Generalized combination schemes have developed further in Kapetanios
et al. (2015) and Bassetti et al. (2018). We illustrate the three combination methods
by assuming that two density forecasts are available, F(yT+h|DT ,M1)∼N(4,1) and
F(yT+h|DT ,M2) ∼N (0,2), and a equally weighted pooling is used (ω1 = ω2 =
0.5). From Fig. 1 one can see that harmonic and logarithmic pools concentrate the
probability mass on one of the model in the pool.

Fig. 1 Pdfs (left) and cdfs (right) of the two forecasting models F(y|DT ,M1) ∼ N(4,1) and
F(y|DT ,M2) ∼ N(0,2) (red solid lines) and of their linear (dashed), harmonic (dotted) and loga-
rithmic (dotted-dashed) combination.
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4 Density forecast evaluation

The density of the variable of interest yT+h at given time T + h is never observed.
This complicates the evaluation of density forecasts. In economics, there are two
main approaches to evaluate density forecasts. The first one is based on properties
of a density and refers to absolute accuracy. The second one is based on comparison
of different forecasts and refers to relative accuracy.

4.1 Absolute accuracy

The absolute accuracy can be studied by testing forecast accuracy relative to the
“true” but unobserved density. Dawid (1982) introduced the criterion of complete
calibration for comparing prequential probabilities with binary random outcomes.
This criterion requires that the averages of the prequential probabilities and of the bi-
nary outcomes converges to the same limit. For continuous random variables Dawid
(1982) exploited the concept of probability integral transform (PIT) that is the value
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that a predictive cdf attains at the observations. The PITs summarize the properties
of the densities and may help us judge whether the densities are biased in a particular
direction and whether the width of the densities has been roughly correct on average
Diebold et al. (1998). More precisely, the PITs represents the ex-ante inverse pre-
dictive cumulative distributions, evaluated at the ex-post actual observations. The
PIT at time T are:

PITT+h =
∫ yT+h

−∞

f (y|DT )dy (22)

and should be uniformly, independently and identically distributed if the h-step-
ahead forecast densities f (yT+h|DT ) conditional on the information set available at
time T , are correctly calibrated.

As an example assume that a set of observations are generated from a standard
normal, Yt ∼ N(0,1), i.i.d. t = T +1, . . . ,T +1000 and that four predictive cdfs are
used:

F(yT+h|DT ,M1)∼ N(0.5,1), F(yT+h|DT ,M2)∼ N(0,2)
F(yT+h|DT ,M3)∼ N(−0.5,1), F(yT+h|DT ,M4)∼ N(0,0.5)

The first model is wrong in predicting the mean of the distribution, the second one
is wrong in predicting the variance. In Fig. 2, which show the cdfs of PITs. In each
plot the red line indicates the PITs of the true model. Errors in mean induce a cdf
that overestimate (left plot) or underestimate (right plot), depending on error sign,
the “true” cumulative density function. Variance overestimation appears as an un-
derestimate in the left side of the distribution, and an overestimate in the right side,
whereas variance underestimation appears as an overestimate in the left side of the
distribution, and an underestimate in the right side. In both cases, the discontinuity
point corresponds at the mean, in which the two line intersect.

Fig. 2 Empirical cdfs of the PITs. Left: PITs generated by F(yT+h|DT ,M1) ∼ N(0.5,1) (dashed
line), F(yT+h|DT ,M2) ∼ N(0,2) (dotted line). Right: PITs generated by F(yT+h|DT ,M3) ∼
N(−0.5,1) (dashed line), F(yT+h|DT ,M4) ∼ N(0,0.5) (dotted line). In each plot the red solid
line indicates the PITS of the true model (N(0,1)).
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Calibration can be gauge by testing jointly for uniformity and (for one-step ahead
forecasts) independence of the PITs, applying the tests proposed by Berkowitz
(2001) and Knuppel (2015).3 Rossi and Sekhposyan (2013) extend the evaluation in
the presence of instabilities; Rossi and Sekhposyan (2014) apply to large database
and Rossi and Sekhposyan (2016) compare alternative tests for correct specification
of density forecasts.

4.2 Relative accuracy

When moving to relative comparison, density forecasts can be evaluated by the
Kullback Leibler Information Criterion (KLIC)-based measure, utilising the ex-
pected difference in the Logarithmic Scores of the candidate forecast densities;
see, for example, Mitchell and Hall (2005), Hall and Mitchell (2007), Kascha and
Ravazzolo (2010) and Billio et al. (2013). The KLIC is the distance between the
true density p(yT+h|DT ) of a random variable yT+h and some candidate density
f (yT+h|DT ,M j) obtained from the model M j and chooses the model that on av-
erage gives the higher probability to events that actually occurred. An estimate of
it can be obtained from the average of the sample information, yT+1, . . . ,yT+1, on
p(yT+h) and f (yT+h|DT ,M j):

KLIC j,h =
1

T ∗
T

∑
T=T

[ln p(yT+h|DT )− ln f (yT+h|DT ,M j)] (23)

where T ∗=(T−T +1). Although we do not know the true density, we can still com-
pare different densities, f (yT+h|M j). For the comparison of two competing models,
it is sufficient to consider the Logarithmic Score (LS) given as:

LS j,h =−
1

T ∗
T

∑
T=t

ln f (yT+h|DT ,M j) (24)

for all j and choose the model for which this score is minimal.
Alternative, density forecasts can be evaluated on the continuous rank probability

score (CRPS); see, for example, Gneiting and Raftery (2007), Gneiting and Ranjan
(2013a), Groen et al. (2013) and Ravazzolo and Vahey (2014). The CRPS for the
model j measures the average absolute distance between the empirical cumulative
distribution function (CDF) of yT+h, which is simply a step function in yT+h, and
the empirical CDF that is associated with model j’s predictive density:

CRPS j,T+h =
∫ +∞

−∞

(
F(y|DT ,M j)− I[YT+h,+∞)(y)

)2
dy (25)

3 For longer horizons, test for independence is skipped.
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where F is the CDF from the predictive density f (yt+h|DT ,M j) of model j. The
sample average CRPS is computed as:

CRPS j,h =−
1

T ∗
T

∑
T=t

CRPS j,T+h (26)

Smaller CRPS values imply higher precisions.
Finally, the Diebold and Mariano (1995) and West (1996) t-tests for equality of

the average loss (with loss defined as log score, or CRPS) can be applied.

4.3 Forecast calibration

An expert is well-calibrated if the subjective predictive distribution (or density func-
tion) agrees with the sample distribution of the realizations of the unknown vari-
able in the long run. When a predictive density F(y|DT ) is not well-calibrated, a
calibration procedure can be applied, by introducing introducing a monotone non-
decreasing map

ψ :
[
[0,1]→ [0,1]
F(·|DT ,ξ ) 7→ F(·|DT ,ξ ) = ψ(F(·|DT ))

(27)

such that F(yT+h|DT ,ξ ) is well calibrated. Bassetti et al. (2018) propose to use the
cdf of a mixture of Beta II distributions as calibration functional, that is

F(yT+h|DT ,ξ ) =
J

∑
j=1

Bα j ,β j(F(yT+h|DT )) (28)

with ξ = (α1, . . . ,αJ ,β1, . . . ,βJ ,ω1, . . . ,ωJ) and α j,β j > 0, ω1+ . . .+ωJ = 1, ω j ≥
0 and Bα,β (u) the cdf of the Beta II distribution. This calibration functional has the
beta calibration scheme of Ranjan and Gneiting (2010) and Gneiting and Ranjan
(2013b) as special case for J = 1 and allows for more flexibility in calibrating in
presence of fat tails, skewness and multiple-modes.

As an example assume that a set of observations are generated from a standard
normal, Yt ∼ N(0,1), i.i.d. t = T + 1, . . . ,T + n, n = 1000 and that the predictive
density results from the following linear pooling:

F(yT+h|DT )∼ 1
3

N(0.5,1)+
1
3

N(0,2)+
1
3

N(−0.5,1).

Since the PITs of the density forecasts are not well-calibrated (dashed line, in the
left panel of Fig. 3), we apply the following calibration functions:
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F(T+h|DT ,ξ ) = Bα,β (F(yT+h|DT ))

F(yT+h|DT ,ξ ) = ωBα1,β1(F(yT+h|DT ))+(1−ω)Bα2,β2(F(yT+h|DT ))

where the parameters α = 2.81 and β = 2.01 and α1 = 23.13, β1 = 6.61, α2 = 2.95,
β2 = 3.19 and ω = 0.36 have been optimally chosen by maximizing the likelihood
function

L(Y T+n|ξ ) =
T+n

∏
t=T+1

(
J

∑
j=1

Bα j ,β j(F(Yt |DT ))

)
(29)

with respect to ξ . For a Bayesian approach to the estimation of the calibration func-
tion see Bassetti et al. (2018). The dashed line in the left panel suggests that the
beta calibration model is not able to produce well-calibrated PITs, whereas the 2-
component beta mixture functional (dotted-dashed line) allows for a better calibra-
tion. The first mixture component Bα1,β1(u) for u ∈ (0,1) (dotted line in the right
plot) is calibrating all the PITs, whereas the second component Bα2,β2(u) (dashed
line) is reducing the value of the PITs below the 60%. A Bayesian approach to infer-

Fig. 3 PITs calibration exercise. Left: PITs generated by the true model (red solid ), the forecasting
model F(y|DT ) (dashed), the beta calibrated model (dotted) and the beta mixture calibrated model
(dashed-dotted). Right: beta calibration function (solid) and the first (dashed) and second (dotted)
component of the beta mixture calibration function.
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ence on the calibration functional can carried out by eliciting a prior on the param-
eter ξ and then using Markov-chain Monte Carlo methods for posterior simulation
(e.g., see Robert and Casella, 2004). As an example consider the beta calibration
exercise of this section. We assume α,β ∼ Ga(2,4) where Ga(c,d) is a gamma
distribution with shape and scale parameters c and d, respectively and pdf

p(z) =
1

Γ (c)
c−d exp

(
−1

d
z
)

zc−1, z > 0. (30)
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Let p(ξ ) = p(α)p(β ) be the joint prior with ξ = (α,β ). The joint posterior distri-
bution

p(ξ |DT+n) ∝ L(Y T+n|ξ )p(ξ ) (31)

is not tractable, thus we apply a Metropolis-Hastings simulation algorithm (see Sec-
tion 5) which generates at the iteration r a candidate ξ ∗ from the random walk
proposal logξ ∗ = logξ +ηr−1, ηt ∼N2(0,diag{0.05,0.05}), where ηr−1 is the pre-
vious iteration random sample from the simulation algorithm. The MH samples are
used to estimate the posterior distribution of the calibrated PITs (left plot in Fig. 4)
and the calibration parameters (right plot).

Fig. 4 PITs calibration exercise. Left: PITs generated by the true model (red solid ), the forecasting
model F(y|DT ) (dashed), the Bayesian beta calibrated model (dotted) and the MCMC posterior
coverage (light gray lines). Right: beta calibration function (solid), he MCMC posterior coverage
(light gray lines), posterior mean (vertical dashed).
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5 Monte Carlo methods for predictive approximation

In the next sections, we report some Monte Carlo (MC) simulation methods which
can be used for approximating predictive densities expressed in integral form. MC
simulation is an approximation method to solve numerically several optimization
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and integration problems, and already found widespread application in economics
and business, e.g., see Kloek and van Dijk, 1978 and Geweke, 1989.

5.1 Accept-reject

The Accept-Reject (AR) algorithm (Robert and Casella, 2004) is used to generate
samples from a density f (y) (called target density) by using an density g(y) (called
instrumental density). The AR algorithm iterates the following steps for r = 1, . . . ,R

1. Generate Xr from g and a uniform Ur from U[0,1], .
2. Accept and set Yr = Xr if Ur ≤ f (Xr)/Cg(Xr)

As an example consider the target density

f (x) ∝ exp(−x2/2)(sin(6x)2 +3cos(x)2 sin(4x)2 +1), (32)

which is not easy to simulate, and assume the following instrumental density

g(x) ∝ exp(−x2/2)/
√

2π, (33)

which is the density of a standard normal distribution and is easier to simulate.
The top panel in Figure 5 reports a graphical comparison of the two densities. The
bottom panel of Figure 5 shows the simulated target density using the AR algorithm
based on 1,000,000 draws. See Listing 3 in the Appendix for the MATLAB code.

Fig. 5 Accept-Reject example. Left: target (dashed) and instrumental (solid) density. Right: target
histogram approximated with 1,000,000 draws.
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5.2 Importance sampling

Let f (y) be a target density function, h a measurable function and

I=
∫

h(y) f (y)dy (34)

the integral of interest. In importance sampling (IS) (see Robert and Casella, 2004,
chapter 3)) a distribution g (called importance distribution or instrumental distribu-
tion) is used to apply a change of measure

I=
∫ f (y)

g(y)
h(y)g(y)dy. (35)

The resulting integral is then evaluated numerically by using i.i.d. samples Y1, . . . ,YR
from g, that is

IIS
R =

1
R

R

∑
r=1

w(Yr)h(Yr) (36)

where w(Yr) = f (Yr)/g(Yr), r = 1, . . . ,R are called importance weights. A set of
sufficient conditions for the IS estimators to have finite variance is the following:

(B1) f (y)/g(y)< M ∀y ∈ Y and V f (h)< ∞

(B1) Y is compact, f (y)<C and g(y)> ε ∀y ∈ Y .

The condition (B1) implies that the distribution g has thicker tails than f . If the
tails of the importance density are lighter than those of the target then the importance
weight w(Y ) is not a.e. bounded and the variance of the estimator will be infinite for
many functions h. A way to address this issue is to consider the self-normalized
importance sampling (SNIS) estimator

ISNIS
R =

∑
R
r=1 w(Yr)h(Yr)

∑
R
r=1 w(Yr)

(37)

It is biased on a finite sample, but it converges to I by the strong law of large number.
As an example let h(y) =

√
|y/(1− y)| and y follow a Student-t distribution

T (ν ,θ ,σ2) with density

f (y) =
Γ ((ν +1)/2)
σ
√

νπΓ (ν/2)

(
1+

(y−θ)2

νσ2

)−(ν+1)/2

IR(y). (38)

We study the performance of the importance sampling estimator when the following
instrumental distributions are used:

1. Student-t, t(ν∗,0,1) with ν∗ < ν (e.g. ν∗ = 7);
2. Cauchy, C(0,1).

We shall recal that the Cauchy distribution C (α,β ) has density function
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g(y) =
1

πβ (1+((y−α)/β )2)
IR(y),

where −∞ < α <+∞ and β > 0 and cumulative distribution function

G(y) =
(

1
2
+

1
π

arc tan
y−α

β

)
IR(y).

The inverse cdf method can be applied in order to generate from the Cauchy:
ifY = G−1(U), where U ∼ U[0,1], then Y ∼ C (α,β ). See Listing 4 in Appendix
for a MATLAB code. We generate 10000 draws from the instrumental distributions.
Figure 6 shows that the importance weights for Student-t and Cauchy are stable (left
panel), but the Cauchy proposal seems to converge faster than the Student-t (right
panel).

Fig. 6 Importance sampling draws for the two different instrumental distributions. Left: impor-
tance sampling weights w(Yj). Right: importance sampling estimator.
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5.3 Metropolis-Hastings

In IS and AR samples from a target distribution can be generated by using a dif-
ferent distribution. A similar idea motivates the use of Markov chain Monte Carlo
methods, where samples are generated from an ergodic Markov chain process with
the target as a stationary distribution. A general MCMC method is the Metropolis-
Hastings (MH) algorithm. Let f (y) be the target distribution and q(x|y) a proposal
distribution. The MH algorithm (see Ch. 6-10 in Robert and Casella, 2004) gener-
ates a sequence of samples Y1, . . . ,YR by iterating the following steps. At the r-th
iteration, given Yr−1 from the previous iteration:

1. generate X∗ ∼ q(x|Yr−1);
2. set
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Yr =

{
X∗ with probability α(X∗,Yr−1)

Yr−1 with probability 1−α(X∗,Yr−1)

where

α(x,y) = min
{

f (y)
f (x)

q(x|y)
q(y|x)

,1
}

The generality of the MH relies on the assumption that the target density is known up
to a normalizing constant, which is common in many Bayesian inference problems.
A drawback of the MH method is that the sequence of samples is not independent
and the degree of dependence depends on the choice of the proposal distribution. In
order to illustrate this aspect, we consider a toy example. Assume the target distri-
bution is a bivariate normal mixture 1/3N2(−ι , I2)+2/3N2(ι , I2) where ι = (1,1)′

and I2 is the 2-dimensional identity matrix and design a random-walk MHalgorithm
with candidate samples X∗ generated from N2(Yr−1,τ

2I2).
Fig. 7 shows the output of 500 iterations of the MH sampler for different values

of the scale parameter τ (different panels). In each plot, the 2-dimensional random
vectors Yr, r = 1, . . . ,500 (red dots), the trajectory of the M.-H. chain (red line con-
necting the dots), the initial value of the algorithm (blue dot) and the level sets of
the target distribution (solid balck lines).

Left plot shows an example of missing mass problem. The scale of the proposal
is too small (τ2 = 0.01), thus the M.-H.chain gets trapped by one of the mode and
is not able to visit the other mode. In this case one expects that the results of the
approximated inference procedure are sensitive to the choice of the initial condition
of the MH chain. The MH chain in the right plot has a better mixing and is able to
generate samples from the two components of the mixture.

Fig. 7 Output of the Metropolis-Hastings for different choices of the random walk scale parameter,
τ2 = 0.01 (left) and τ = 1 (right). In each plot: the trajectory of the M.-H. chain (red line), the initial
value of the algorithm (blue dot) and the level sets of the target distribution (solid balck lines).
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5.4 Constructing density forecasting using GPU

There is a recent trend in using Graphical Processor Units (GPUs) for general,
non-graphics, applications (prominently featuring those in scientific computing)
the so-called General-Purpose computing on Graphics Processing Units (GPGPU).
GPGPU has been applied successfully in different fields such as astrophysics, biol-
ogy, engineering, and finance, where quantitative analysts started to use this tech-
nology ahead of academic economists, see Morozov and Mathur (2011) for a lit-
erature review. To date, the adoption of GPU computing technology in economics
and econometrics has been relatively slow compared to other fields. There are just
a few papers that deal with this interesting topic (e.g., see Morozov and Mathur,
2011; Geweke and Durham, 2012; Durham and Geweke, 2014; Casarin et al., 2015;
Vergé et al., 2015; Casarin et al., 2016). This is odd given the fact that parallel
computing in economics has a long history and specifically for this paper comput-
ing density forecasts based on bootstrapping or Bayesian inference requires exten-
sive computation that can be paralleled. The low diffusion of this technology in the
economics and econometrics literature, according to Creel (2005), is related to the
steep learning curve of a dedicated programming language and expensive hardware.
Modern GPUs can easily solve the second problem (hardware costs are relatively
low), but the the first issue still remains open. Amont the popular softwares used in
econometrics (e.g., see LeSage, 1998), MATLAB has introduced from the version
R2010b the support to GPU computing in its parallel computing toolbox. This al-
lows for using raw CUDA code within a MATLAB code and MATLAB functions
that are executed on the GPU. See Geweke and Durham (2012) for a discussion
about CUDA programming in econometrics. As showed in the Appendix, using the
build-in functions, GPGPU can be almost effortless where the only knowledge re-
quired is a decent programming skill in MATLAB.

6 Conclusion

This paper reviews different methods to construct density forecasts based on error
assumptions, bootstrapping and Bayesian inference. We describe different assump-
tions of the three methods in the case of the simple linear regression models and
provide tools to extend the analysis to more complex models. We also discuss den-
sity combinations as a tool to deal in the case there are several density forecasts
and an a priori selection is difficult. And we provide some evaluation tools to mea-
sure the accuracy of density forecasts, accounting for the fact that the “true” density
forecast is never observed, even ex post.

As example, we present how to use GPU computing almost effortless with MAT-
LAB. The only knowledge required is a decent programming skill and a knowl-
edge of the GPU computing functions introduced in the MATLAB parallel com-
puting toolbox. We generate random numbers, estimate a linear regression model
and present a Monte Carlo simulation based on accept/rejection algorithm. We ex-
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pect large benefits in computational time when dealing with big database with GPU
computing.

Appendix

There is little difference between a CPU and a GPU MATLAB code as listings 1 and
2, for example, show. The pseudo code, reported in the listings, generates random
variables Y and X and estimates the linear regression model Y = Xβ + ε , on CPU
and GPU, respectively.

The GPU code, Listing 2, uses the command gpuArray.randn to generate a ma-
trix of normal random numbers. The build-in function is handled by the NVIDIA
plug-in that generates the random number with an underline raw CUDA code. Once
the variables vY and mX are created and saved in the GPU memory all the related
calculations are automatically executed on the GPU, e.g., inv is executed directly on
the GPU. This is completely transparent to the user.

If further calculations are needed on the CPU then the command gather transfers
the data from GPU to the CPU, see line 5 of Listing 2. There exist already a lot of
supported functions and this number continuously increases with new releases.4

1 iRows = 1000 ; iColumns = 5 ; % number o f rows and columns
2 mX = randn ( iRows , iColumns ) ; % g e n e r a t e random numbers
3 vY = randn ( iRows , 1 ) ;
4 vBeta = i n v (mX ’ ∗ mX) ∗ mX’ ∗ vY ;

Listing 1 MATLAB CPU code that generate random numbers and estimate a linear regression
model.

1 iRows = 1000 ; iColumns = 5 ; % number o f rows and columns
2 mX = gpuArray . r andn ( iRows , iColumns ) ; % g e n e r a t e random

numbers
3 vY = gpuArray . r andn ( iRows , 1 ) ;
4 vBeta = i n v (mX ’ ∗ mX) ∗ mX’ ∗ vY ;
5 vBeta = g a t h e r ( vBeta ) ; % t r a n s f e r d a t a t o CPU

Listing 2 MATLAB GPU code that generate random numbers and estimate a linear regression
model.

As further examples in Listings 3 and 4 we show the GPU implementation of the
accept/reject and the importance sampling algorithms presented in Section 5.

1 s a m p s i z e = 1000000; % sample s i z e t o use f o r examples

4 See for the complete list of functions http://www.mathworks.com/help/distcomp/using-
gpuarray.html
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2 s i g = 1 ; % s t a n d a r d d e v i a t i o n o f t h e i n s t r u m e n t a l
d e n s i t y

3 samp = gpuArray . r andn ( samps ize , 1 ) .∗ s i g ; % s t e p 1 i n t h e A/ R
a l g o r i t h m

4 ys = exp ((− samp . ˆ 2 ) / 2 ) .∗ ( s i n (6 ∗ samp ) . ˆ 2 + 3 ∗ ( ( cos ( samp ) . ˆ 2 )
. ∗ ( s i n (4∗ samp ) . ˆ 2 ) ) + 1 ) ;

5 wts = ( 1 / s q r t (2∗ p i ) ) .∗ exp(−samp . ˆ 2 / 2 ) ;
6 samp2 = gpuArray . r and ( samps ize , 1 ) ;
7 dens = samp ( samp2<=(ys ) . / wts ) ; % s t e p 2 i n t h e A/ R a l g o r i t h m
8 t a r g e t = g a t h e r ( dens ) ; % s t e p 3 i n t h e A/ R a l g o r i t h m

Listing 3 Accept/reject MATLAB GPU code.

1 nIS = 10000 ; nu = gpuArray ( 1 2 ) ; n u s t a r = gpuArray ( 7 ) ;% number o f
s i m u l a t i o n s ; d e g r e e o f f reedom of t h e t a r g e t d e n s i t y ; d e g r e e
o f f reedom of t h e p r o p o s a l

2 muIS = gpuArray . nan ( nIS , 2 ) ;
3 wIS = gpuArray . nan ( nIS , 2 ) ;
4 x1 = rant GPU ( nIS , n u s t a r ) ; % S t u d e n t t

p r o p o s a l s
5 x2 = t a n ( ( gpuArray . r and ( nIS , 1 ) − 0 . 5 ) ∗ p i ) ; % Cauchy p r o p o s a l s
6 wIS ( : , 1 ) = w1 GPU ( x1 , nu , n u s t a r ) ; % I m p o r t a n c e

w e i g h t s
7 wIS ( : , 2 ) = w3 GPU ( x2 , nu ) ; % I m p o r t a n c e

w e i g h t s
8 muIS ( : , 1 ) = s q r t ( abs ( x1 . / (1 − x1 ) ) ) ;
9 muIS ( : , 2 ) = s q r t ( abs ( x2 . / (1 − x2 ) ) ) ;

10 muIScum ( : , 1 ) =cumsum ( muIS ( : , 1 ) .∗wIS ( : , 1 ) ) . / ( 1 : nIS ) ’ ;
11 muIScum ( : , 2 ) =cumsum ( muIS ( : , 2 ) .∗wIS ( : , 2 ) ) . / ( 1 : nIS ) ’ ;
12 %
13 % A d d i t i o n a l f u n c t i o n s
14 f u n c t i o n w = w1 GPU ( x , nu , n u s t a r ) % S t u d e n t ’ s t w e i g h t s
15 w = tpdf GPU ( x , nu ) . / tpdf GPU ( x , n u s t a r ) ;
16 end
17 f u n c t i o n w=w3 GPU ( x , nu ) % Cauchy w e i g h t s
18 w = tpdf GPU ( x , nu ) . / pdfcauchy GPU ( x , 0 , 1 ) ;
19 end
20 f u n c t i o n f = tpdf GPU ( x , v ) % S t u d e n t ’ s t GPU pdf
21 k = f i n d ( v>0 & v<I n f ) ;
22 i f any ( k )
23 t e rm = exp ( gammaln ( ( v ( k ) + 1) / 2 ) − gammaln ( v ( k ) / 2 ) ) ;
24 f ( k ) = te rm . / ( s q r t ( v ( k ) ∗ p i ) .∗ (1 + ( x ( k ) . ˆ 2 ) . / v ( k )

) . ˆ ( ( v ( k ) + 1) / 2 ) ) ;
25 end
26 end
27 f u n c t i o n f = pdfcauchy GPU ( x , a , b ) % Cauchy GPU pdf
28 f = 1 . / ( p i .∗ b .∗ (1 + ( ( x − a ) . / b ) . ˆ 2 ) ) ;
29 end

Listing 4 Importance sampling GPU code.
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