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Abstract

Modeling individual choices is one of the main aim in microeconometrics. Discrete choice models has been

widely used to describe economic agents’ utility functions, and most of them play a paramount role in applied

health economics. On the other hand, spatial econometrics collects a series of econometric tools which are

particularly useful when we deal with spatially-distributed data sets. It has been demonstrated that accounting

for spatial dependence can avoid inconsistency problems of the commonly used estimators. However, the

complex structure of spatial dependence in most of the nonlinear models still precludes a large diffusion

of these spatial techniques. The purpose of this paper is then twofold. The former is to review the main

methodological problems and their different solutions in spatial discrete choice modeling as they have appeared

in the econometric literature. The latter is to review their applications to health issues, especially in the last few

years, by highlighting at least two main reasons why spatial discrete neighboring effects should be considered

and then suggesting possible future lines of the development of this emerging field.
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1. Introduction

Discrete choice models with an explicit consideration of spatial neighboring effects have received less

attention in the econometrics literature. Nevertheless, the role of space is becoming paramount in health

economics as it is witnessed by the large and increasing amount of publications found in the literature on the

subject in recent years, see Baltagi et al. (2012) Gravelle et al. (2014) Arbia et al. (2014) and Atella et al.

(2014).

A plausible reason for the relatively scarce diffusion of spatial discrete choice (SDC) models in health

economics and in all the other fields is certainly connected to their complexity, see Fleming (2004). Indeed,

there are still a number of methodological problems to be solved connected with the computational burden
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and accuracy of the various techniques as soon as we start dealing with large datasets which is often the case

in health economics issues and microeconomic datasets. The problem becomes serious in a way that these

models have experienced increasing attention in recent years by spatial econometricians, see Smirnov (2010)

for a review, and the methodologies proposed are still largely unexplored, especially those related to health

issues. This apparently might be not a serious problem, if only a-spatial discrete choices (DCs) and limited

dependent variables (LDVs) were not widely used to solve health problems, see Jones (2000), Jones (2007). The

estimation problems also preclude an easy extension to panel data applications, whose diffusion is experiencing

a massive increase.

Modeling economic agent-based spatial relationships will be instead an approaching problem to be solved

since that individual decisions usually depend upon neighboring agents’ decisions. In the last 20 years, we

have had an increased experience in econometric studies as basis of health policy. Most of them required the

use of LDV or DC models to describe health care expenditures, treatment effects analysis, etc., see e.g. Varin

and Czado (2009), Munkin and Trivedi (2008), Santos et al. (2017), Varkevisser et al. (2012), Lindeboom and

Kerkhofs (2009), Deb et al. (2006) and Basu et al. (2007). However, a very limited number of papers take into

account space and spatial structure of discrete health data sets. Some empirical works considered a distance

variable or a spatial dummy variable to distinguish between districts/regions, see e.g. Geweke et al. (2003),

Wolff et al. (2008) and Nketiah-Amponsah (2009), but none of them used spatial spillover effects by introducing

autocorrelation coefficients.

The present paper is mainly focused on synchronic cross-sectional data analysis. Nevertheless, a brief

review on spatial discrete choice panel data models is included, and for a review of spatial linear econometric

models with panel health data sets the reader is referred to Moscone and Tosetti (2014). The purpose of this

paper is twofold. The former is to review the main methodological problems and their different solutions in

spatial discrete choice modeling as they have appeared in the econometric literature. The latter is to review

their applications to health issues, especially in the last few years, by highlighting at least two main reasons

why spatial discrete neighboring effects should be considered and then suggesting possible future lines of the

development of this emerging field.

The paper is structured in the following way. Section 2 explain two limited dependent variable model

specifications focusing on discrete choices. This section gives a brief overview of this type of models by

suggesting possible guidelines. The proper definition of the marginal impacts for spatial binary probit models is

also included. Section 3 a brief overview of spatial limited dependent variable models focusing on discrete choices

with their main estimation problems and related solutions. In this section there is also a brief explanation of

the inconsistency problem, a reason why spatial models seems to be preferred to a-spatial ones. Finally, a brief

paragraph on the packages in R developed for spatial discrete choices is also included. Section 4 reviews the

empirical applications in health economics which make use of SDC models and tries to stimulate the readers

to adopt spatial econometric techniques at least as an alternative in comparison with standard econometric
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approaches. Finally, Section 5 concludes.

2. Spatial discrete choice model specifications

2.1. Models’ specifications

Spatial econometricians are usually interested in extending standard econometric models by assuming that

it is likely the presence of some form of regional/social dependence when we deal with sample units observed

over a space. In the following three subsections we explain the main discrete choice model specifications, the

correct specifications of the marginal effects and the substantive correlation information inside the autoregessive

parameter, respectively. In a discrete choice environment with binary outcomes a spatial autoregressive probit

model with autoregressive distrurbances, i.e. SARAR–probit, is rather general, see Billé and Leorato (2017).

Let yn be a n–dimensional stochastic vector of spatial binary variables located on a possibly unevenly spaced

lattice Z ⊆ <n. A spatial (first–order) autoregressive–regressive probit model with (first–order) autoregressive

disturbances (SARAR(1,1)–probit) is defined as

y∗n = ρWny∗n + Xnβ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) (1)

where y∗n is the n–dimensional vector of latent continuous dependent variables, yn is the n–dimensional

vector of observed binary dependent variables defined by the n−dimensional indicator function In (y∗ > 0) =

(I(y∗1 > 0), . . . , I(y∗n > 0))
′
, Xn is the n by k matrix of exogenous variables including a constant term, Wn and

Mn are n–dimensional spatial weighting matrices of known constants, θ =
(
β′, ρ, λ

)′
is a (k + 2)–dimensional

parameter vector with autoregressive coefficients ρ and λ, and εn is a multivariate normal vector of innovations

with zero mean and finite variance σ2
ε < ∞, such that Σε = σ2

εIn. Latent variables are then assumed to be

linear functions of the regressors, but they are observed through the use of a binary variable that makes the

overall model nonlinear in parameters. In the nonlinear case, σ2
ε is usually set to 1 for identification. Additional

conditions are needed for the identification of (ρ, λ) in a SARAR(1,1)–probit model. Specifically, Mn and Wn

are assumed to be different thus allowing for different mechanisms to govern spatial correlation between shocks

affecting the latent model and spatial dependence of the latent variables themselves. Then, the entire spatial

dependence can be easily disentangled. It is notable that, when Wn = Mn, then distinguishing among the two

spatial effects may be difficult, with possible identification problems of the autoregressive parameters. In this

particular case, sufficient conditions to ensure identifiability of the linear model is that the covariates make a

material contribution towards explaining variation in the dependent variable.

An alternative specification of equation (1) is the Spatial Durbin probit model (or the Spatial Durbin

error probit model), which can be useful to avoid possible omitted variable biases and to inform about local
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correlation effects, see e.g. Elhorst (2010) and LeSage (2014) for details in the linear case. The Spatial Durbin

probit model can be written in the following way

y∗n = ρW1,ny∗n + Xnβ + W2,nXnθ + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) (2)

where W2,nXn are the spatially lagged regressors with coefficients θ which captures local spatial correaltion

effects, and the other terms are defined above.

The inclusion of spatially-lagged dependent variables Wny∗n typically causes an endogeneity problem, which

in turn produces inconsistency of least squares estimators. This problem is referred to the bi-directionality

nature of spatial dependence in which each site, say i, is a second-order neighbor of itself, implying that spatial

spillover effects have the important meaning of feedback/indirect effects also on the site where the shock may

have had origin. The problem also makes the overall model a system of n simultaneous equations (one for each

random variable in space), with the consequence that spatial autoregressive models cannot be viewed as simple

extensions of natural recursive time–series econometric models, see Hamilton (1994). These type of spatial

models are then multivariate by definition, with the peculiarity of having statistical information coming from

one observation for each random variable in space in a cross–sectional framework.

Interesting should be also the case of more than two modalities. For instance, consider a multinomial probit

model as the following one

u∗ij = x′ijβ + εij , εij ∼ N (0, σ2
εj )

yij = 1 iff u∗ij > u∗ik k 6= j

yij = 0 otherwise (3)

where the utility associated with the preference j of individual i is a linear function of some regressors xij

for j = 1,...,J alternatives and i = 1,...,n individuals, the j-th alternative is chosen if its utility is a maximum

respect to all the other alternatives, and usually σεj = 1 for model identification. An extension of the previous

utility model can be considered by assuming that unobserved utility functions are autocorrelated, revealing

that individuals’ preferences depend also on the preferences of “neighboring” people (the problem in this case

is to identify a reasonable W matrix to define individuals’ interactions). This may lead to the following spatial

random utility maximization (SRUM) specification

u∗ij = ρ

n∑
i 6=h

wihu
∗
ij + x′ijβ + εij , εij ∼ N (0, σ2

εj )

yij = 1 iff u∗ij > u∗ik for k 6= j

yij = 0 otherwise (4)

where the term ρ
∑n
i 6=h wihu

∗
ij summarizes the dependence structure between individuals’ preferences. Recently,

Smirnov and Egan (2012) have proposed a model of this type in order to measure unobserved spatial
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interdependencies between households and establish if these interdependencies have a significant effect on the

recreational travel choices. Unfortunately, the way in which they capture these unobserved spatial/social effects

is based on an aggregation of the neighboring spatial units at a county level, loosing the advantage of considering

information at agent-based microeconomic data. Bolduc et al. (1996a) proposed a spatial autoregressive error

(SAE) process (i.e. the model in (1) when ρ = 0) for the utility functions in order to allow for suspected

interdependences among location choices (so among the alternatives or preferences: 18 regions) in a study of

the choice of location by general practitioners in their initial work. Indeed, they argued that “spatial correlation

is likely to be present in the data because of the similarity of unobserved attributes in neighboring regions”,

finding that the spatial model was to be preferred. Some models of this type can be also found in land-use

applications (e.g. Sidharthan and Bhat (2012) Chakir and Parent (2009)) in which individuals’ (land owners’)

interactive decisions are associated with spatial correlation among the type of use of the land (i.e. parcel units,

which corresponds to the alternatives). The problem of a knowledge diffusion of these type of models into the

health field seem to be surely caused by the insufficient information on the individuals’ spatial locations, but

sometimes also by the lack of applied economists’ information on more advanced econometric methods that

usually comes from different literatures. For instance, the previous SAE model can be written in the following

way

u∗ij = x′ijβ + εij , εij = λ

J∑
j 6=k

wjkεij + vij , vij ∼ N (0, σ2
vj )

yij = 1 iff u∗ij > u∗ik for k 6= j

yij = 0 otherwise (5)

where λ
∑J
j 6=k wjkεij now summarizes the dependence structure between unobserved attributes or between

selected alternatives. This model can be used for example in the context of patient hospital choices, see

e.g. Varkevisser et al. (2012), in which individuals maximized their utilities in choosing among different

hospitals and the choice cannot depend only on several hospital attributes (e.g. hospital’s quality) or travel

time (which justifies the use of the a-spatial mixed logit model), but it is also likely the presence of spatial

autocorrelation between those alternatives since a recent literature is for instance recognizing the importance

of spatial competition between them, see Gravelle et al. (2014). Considering at least a spatial error structure

of our model is more prominent when dealing with nonlinear models, since we generally have inconsistent

estimates, see Section 3.3, rather than a loss of efficiency in the linear case.

2.2. Marginal effects

Billé and Leorato (2017) suggest the correct specifications of the marginal effects for spatial nonlinear

autoregressive models. In the following we briefly explain how this marginal effects are defined.

In nonlinear regressions, the interpretation of the marginal effects in terms of the change in the conditional
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mean of y when regressors X change by one unit is no longer possible. The effects arising from changes in the

explanatory variables depend in a nonlinear way on the levels of these variables, i.e. changes in the explanatory

variable near the mean have a very different impact on decision probabilities than changes in very low or high

values. For spatial autoregressive probit models, the nonlinearity increases in the evaluation of the marginal

effects, see Beron and Vijverberg (2004), LeSage et al. (2011). Recently, Billé (2014) has also pointed out

the main consequences in evaluating marginal effects with and without the consideration of heteroskedasticity

implied by the spatial autocorrelation coefficient.

Let x.h = (x1h, x2h, ..., xih, ..., xnh)
′

an n–dimensional vector of units referred to the h–th regressor,

h = 1, . . . , k, and xi. = (xi1, xi2, ..., xih, ..., xik)
′

a k–dimensional vector of regressors referred to unit i.

By correctly specifying the conditional exped value and covariance matrix of model in (1), the following

specifications of the marginal effects has been proposed

∂P (yi = 1 | Xn)

∂x′.h
|x̄ = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X̄

}
i.
β
)
{Σ−1/2

ν(ρ,λ)}ii{A
−1
ρ }i.βh

∂P (yi = 1 | Xn)

∂x′.h
|x = φ

(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X

}
i.
β
)
{Σ−1/2

ν(ρ,λ)}ii{A
−1
ρ }i.βh (6)

where Σν(ρ,λ) is the variance–covariance matrix implied by the reduced form of a SARAR(1,1)–probit model

and Σ
−1/2
ν(ρ,λ) =

{
σνi
−1
}

, A−1
ρ = (I− ρW)

−1
, X̄ is an n by k matrix of regressor–means, ( · )i. considers the i–th

row of the matrix inside, and ( · )ii the i–th diagonal element of a square matrix. Note that Σν(ρ,λ) reduces to

Σu(ρ) for a SAR(1)–probit specification with u = A−1
ρ ε.

The first specification of equations (6) explains the impact of a marginal change in the mean of the h–

th regressor, i.e. x̄.h, on the conditional probability of {yi = 1}, i.e. P (yi = 1 | Xn), setting x̄.h′ for all

the remaining regressors, h′ = 1, . . . , k − 1. The second specification of equations (6) considers, instead, the

marginal impact evaluated at each single value of x.h. The results are two n–dimensional square matrices

for {y1, y2, . . . , yn}. Both the specifications should be evaluated with consistent estimates of the spatial

autocorrelation coefficients
(
ρ̂, λ̂
)

.

Spatial marginal effects are then split into an average direct impact and an average indirect impact. The

average of the main diagonal elements of the n–dimensional matrix, in both the equations, is the average

direct effect (i.e., the impact from their own regions). The average of the cumulated off–diagonal elements is

the average indirect effect – due to spatial spillover effects (i.e., the impact from other regions). Finally, the

average total effects is the sum of them (LeSage and Pace, 2009). Changes in the value of an explanatory

variable in a single observation (i.e. a spatial unit) i may influence all the n − 1 other observations. The

scalar summary measure of indirect effects cumulates the spatial spillovers falling on all other observations,

but the magnitude of impact will be greatest for nearby neighbors and declines in magnitude for higher–order

neighbors. LeSage et al. (2011) pointed out the need to calculate measures of dispersion for these estimates. In

Billé and Leorato (2017) there are some results on the marginal effects and their measures of dispersion based
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on Monte Carlo simulations.

Observation–level total effects estimates, sorted from low–to–high values of each regressors, can be also

viewed as an important measure of spatial variation in the impacts (Lacombe and LeSage, 2013). This kind of

interpretation permits also to account for spatial heterogeneity due to the variation over space of the marginal

impacts with respect to the spatial distribution of the regressors1. Within nonlinear models, the possibility of

evaluating a marginal impact with respect to a particular value xih have the same meaning of considering a

marginal impact in a particular region/site for regressor h. Finally, note that the specification of our marginal

effects are different compared with those proposed by LeSage et al. (2011) and Beron and Vijverberg (2004).

2.3. A substantive correlation information

Apart form an omitted variable problem whose solving is a purely statistical purpose, it should be

emphasized that the additional information deriving from the geographical location of data is of paramount

importance in health economics for a number of reasons. For instance, it is relevant to describe regional

inequalities in the geographical distribution of the total number of general practitioners, since this proxies

inequalities in the access on health services, see Bolduc et al. (1996a). Two recent relevant papers in the spatial

health econometrics field are those of Atella et al. (2014) and Gravelle et al. (2014). The former developed a

spatial Durbin model (SDM) by partitioning the W contiguity weighting matrix into two sub-matrices in order

to take into account institutional constraints in a study of per-capita public health expenditure, finding that

spatial effects plays a role mainly within entities belonging to the same institutional setting while the between

effect is quite negligible. The latter used instead a spatial autoregressive-regressive (SAR) model in order to

detect if a hospital’s quality level depends on its rivals’ quality levels in a competitive setting. The main finding

was that hospitals’ quality levels, in terms of the overall mortality rate, are positively autocorrelated.

From a substantive point of view, spatial parameters usually bear an important information content in a

way that they cannot be thought as simply nuisance parameters2. Indeed, spatial dependence not only means

lack of independence between observations but also an underlying spatial structure, so that the autoregressive

coefficient ρ should be interpreted as causal relationship information parameter between y∗ and its neighboring

values in a discrete context. This should be particularly relevant in all those cases in which we need to describe

social interaction/dependence effects between economic agents over space. For instance, it might be interesting

to evaluate the probability that a single person take the decision of choosing a particular health facility that

has been affected by the decisions of neighboring economic agents. Moscone et al. (2012) have recently modeled

peer effects between economic agents’ hospital choices, but their interpretation is more related on a temporal

dimension rather than a proximity in space.

1See Billé et al. (2017) for a two–step approach specifically thought to account for unobserved discrete spatial heterogeneity in

the beta’s coefficients via iterated local estimation procedures.
2See Anselin (2002) for a brief discussion on differences between substantive and nuisance correlation parameters.
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3. Estimation

3.1. Generalities

Traditionally, spatial regression models are estimated by maximum likelihood (ML) method. However,

this approach can often become computationally unfeasible especially when dealing with discrete dependent

variables. In order to solve this issue, some methodological and computational solutions have been recently

proposed; and furthermore, in view of the possible computational advantages, many researchers seems to

be increasingly incline to use Bayesian inference with the well-known MCMC and Gibbs sampling approaches

(LeSage, 2000). At the same time, an emerging literature is seeing the development of semi- and non-parametric

techniques (McMillen and McDonald, 2004). In the following of this section we provide a brief review of the

main methodological innovations in the econometric subfield of discrete choice and limited dependent variable

spatial modeling by distinguishing them according to the nature of the dependent variable, with the purpose

to highlight the potential of the proposed solutions.

3.1.1. Binary variables

As well known from the econometric literature, discrete choice models can be distinguished according to the

number of modalities of their discrete dependent variables. Nonlinear models like binary probit/logit models

are useful to describe binary dependent variables and both of them have received particular attention in order

to introduce spatial spillover effects, see McMillen (1992), Pinkse and Slade (1998), Fleming (2004), Beron and

Vijverberg (2004). However, the spatial dependence structure adds complexity in the estimation of parameters,

at least because of the implied heteroskedasticity. Solutions for inconsistency due to heteroskedastic variances

in spatial probit/logit models have been proposed, see Case (1992) and Pinkse and Slade (1998). However, there

is no consideration in these cases on the information coming from the off–diagonal elements of the vaariance–

covariance matrix.

Due to the easier accessibility to computer-based solutions, a class of maximum simulated likelihood (MSL)

estimators has been proposed to deal with both inconsistency and loss of efficiency, see McMillen (1992)

and Beron et al. (2003). Nowadays, a major problem in maximizing this log-likelihood function with MSL

approaches is represented by fact that it repeatedly involves the calculation of the determinant of n by n

matrices whose dimension depends on the sample size, in which cases the use of sparse matrices is generally

recommended, see also Pace and Barry (1997). The GMM is also affected by this problem in the nonlinear

context. For this reason MSL/GMM apporaches are still computationally unfeasible. Important contributions

are those of Klier and McMillen (2008) in a GMM environment, Bhat (2011) and Mozharovskyi and Vogler

(2016) in the realm of the composite ML estimation, and Martinetti and Geniaux (2017) for approximate

ML estimation. However, the estimator proposed by Klier and McMillen (2008), a linearization of the GMM

proposed by Pinkse and Slade (1998), has good properties has long has the true autocorelation coefficient is
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small. The other solutions are instead only approximations.

Differently from numerical approximation solutions, Bhat and Sener (2009) copula-based approach does

not require simulation machinery and provides a simple closed-form solution, which is computationally feasible

even with very large sample sizes. However, when dealing with discrete data there is no unique copula that can

be defined and the interpretation of the correlation coefficient is different with respect to the autocorrelation

coeffcient ρ in model (1). Wang et al. (2013) proposed instead a partial maximum likelihood approach which is

based on a trade-off solution between statistical efficiency and computational burden. Their limits are mainly

relative to the model specification, i.e. a spatial error process which is less attractive for empirical applications,

and the absence of a criterion for the partition of the spatial data into groups of pairs of random variables.

Billé and Leorato (2017) overcome these limits.

Despite the above mentioned estimation limits, the literature in increasing interested also in extending the

above model specifications with panel data. In this context we recognise the recent work by Pinkse et al.

(2006), Arduini (2016) and Baltagi et al. (2016). The first one specify a dynamic model with a one–step GMM

estimation procedure, whereas the second and the third proposed a semiparametric approach and a Bayesian

pairwise approach, respectively.

3.1.2. Ordered and unordered variables

When we deal with more than two modalities ordered or unordered between them, ordered-response

probit/logit models and multinomial probit/logit models are adopted, respectively.

In health economics, ordered response models are usually used to described individual inequalities of self-

assessed health (SAH) and its reporting heterogeneity (Lindeboom and Van Doorslaer, 2004), state-dependent

reporting bias and justification bias (Lindeboom and Kerkhofs, 2009), or scale of reference bias problem (Groot,

2000)3. Although many databases require ordered discrete responses in a spatial context, few papers with

spatial spillover effects have been found. Among these, two relevant papers are those of Ferdous and Bhat

(2013) and Castro et al. (2013). The former developed a spatial panel ordered-response model with spatial

dependence introduced in both the exogenous variables and the error terms, while accounting for unobserved

spatial heterogeneity and accommodating time-varying dependency effects in a urban land-use application.

The latter proposed a spatial random coefficient generalized ordered-response probit (SRC-GORP) model with

a spatial intermediate formulation of the dependence structure to analyze injury severity of crashes occurring

at urban intersections. Both the estimation procedures rely on the composite marginal likelihood proposed by

Bhat (2011).

Multinomial probit/logit models are instead justified by the random utility theory, see McFadden (2001)

and Manski (1981), and are usually used in health economics to describe individuals’ choices and utilizations

3See Greene et al. (2014) for a recent review of ordered response models for this type of applications.
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of health care services. These models define individual utility functions based on some features that only vary

between individuals (i.e. effects through decision-makers) and some others that only vary among individual

choices (i.e. effects among choice alternatives). See Weeks (1997) for a review on specification and estimation

of this type of models. The IIA property is unlike to hold in spatial autoregressive models. The GEV class of

models, see Hunt et al. (2004), Bhat and Guo (2004) Bekhor and Prashker (2008) and Pinjari (2011), relaxes

the IID assumption of the MNL by allowing the random components of alternatives to be correlated, while

maintaining the assumption that they are identically distributed, assuming a Gumbel distribution for the error

terms. For instance, Bhat and Guo (2004) proposed a mixed spatially correlated logit (MSCL) model which

utilized a GEV structure in order to consider utility correlation between spatial units, and they superimposed a

mixed distribution on the GEV structure to capture the unobserved response heterogeneity in a housing choices

study. Bekhor and Prashker (2008) examined several GEV models to discuss their adaptability on destination

choice situations, with the object to determine the probability that a person from a given origin chooses a

particular destination among different available alternatives. Pinjari (2011) has formally obtained the class

of multiple discrete-continuous generalized extreme value (MDCGEV) models, and in particular he tested the

existence and extracted the general form of the consumption probability in a closed-form, with an application

in a household expenditure analysis. Finally, Bhat et al. (2015) developed a spatial multiple discrete-continuous

probit (MDCP) model to specify and estimate a model of land-use change that is capable of predicting both

the type and the intensity of urban development patterns over large geographic areas. The formulation also

accommodates spatial heterogeneity and heteroskedasticity in the dependent variable, and should be applicable

in a wide variety of fields where social and spatial dependencies between decision agents (or observation units)

lead to spillover effects in multiple discrete-continuous choices (or states). The estimation procedures of the

GEV class of models rely on maximum–simulated likelihood (MSL) estimation which is time–consuming as

mentioned in the previous section, while Bhat et al. (2015) considers the composite marginal likelihood in Bhat

(2011).

3.1.3. Count data and limited dependent variables

A different discussion can be made for count data variables. As already well-known, count data models are

used when dependent variables consist in a count of positive integers. Due to the nature of these variables, data

are usually affected by asymmetric distribution problems and high proportions of zero. In health economics

these models have been subjected to a wide diffusion in order to analyze the demand for health care and the

health care utilization. Empirical spatial econometric papers with count data dependent variables are still

not many. Recent promising works are those of Lambert et al. (2010) and Castro et al. (2012). The former

developed a two step limited information maximum likelihood (LIML) estimator for a spatial autoregressive

Poisson model, with small sample properties evaluated using by Monte Carlo simulations. The latter proposed

a spatial lag count model with temporal dependence in a generalized ordered response context, introducing
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spatial dependences by using a spatial structure on the latent continuous variables and time-varying temporal

correlation patterns by means of an appropriate structure for the error term of the latent variable. The

estimation procedure is based on composite marginal likelihood in Bhat (2011).

Finally, it should be recognized the recent important contributions by Xu and Lee (2015), Qu and Lee

(2012) and Qu and fei Lee (2012) on the estimation of Spatial Autoregressive Tobit models. In particular,

the first one analysed the asymtpotic properties based on the spatial near–epoch dependence of the dependent

variable process, see Jenish (2012) Jenish and Prucha (2009) Jenish and Prucha (2012), of the maximum

likelihood estimator. Finite sample properties of the estimator are also included. Whereas the second and the

third focused on the asymptic and finite sample properties of LM test statistics for the spatial simultaneous

autoregressive Tobit model.

3.2. Bayesian analysis

Because of the apparent computational advantages, Bayesian techniques have received an increasing

attention in several applied research fields, especially those related to agricultural and land use issues. For

instance, some of the followings made use of binary variables (Holloway et al., 2002), (Holloway et al., 2007),

ordered responses (Wang and Kockelman, 2009b), (Wang and Kockelman, 2009a), unordered responses (Chakir

and Parent, 2009) and count data (Rathbun and Fei, 2006), (Ver Hoef and Jansen, 2007). Anyway, it should

be clarified that the use of Bayesian inference should not be generally preferred to a frequentist approach

without a justified statistical reason. In order to briefly explain, in all cases in which a non-correct prior

distribution is chosen, the estimates may give misleading results, and in most empirical cases we generally

do not have sufficient information to define a proper prior. Many uninformative or diffuse priors have been

surely proposed, but for those priors we generally expect that “the likelihood will dominate the prior” (i.e. the

likelihood function will provide the significant part of information). Being Bayesian inference a different “way”

to view the estimation of parameters, a comparison with MSL and other kind of estimators is necessary to make

us sure of our results. For example, in a comparison between MSL estimator and the Gibbs sampling approach

Bolduc et al. (1997), no significant differences were found. Moreover, recently in LeSage and Pace (2009) it

has emerged that Bayesian MCMC requires extensive simulation, is time-consuming, is not straightforward

to implement, it can creates converge assessment problems and, therefore, it seems does not have particular

advantages on MSL-based estimators. However, as LeSage (2014) stressed, a Bayesian approach can be used

in many situations where a prior knowledge (for example on the well-known W matrix) is required.

3.3. The problem of inconsistency

Although a long list of reasons would justified the use of spatial autoregressive models, the one we are

dealing with is the inconsistency problem of the standard probit estimators.
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The error term in a simple probit model summarizes the unknown information coming from other

regressors (i.e. omitted variables) which we assume to be uncorrelated with those in Xn. In this case,

extremum estimators, such as likelihood based estimators, are consistent, see Amemiya (1977), Amemiya

(1978) and Amemiya (1985). However, unknown forms of misspecification of the functional form (Yatchew

and Griliches, 1985), for example when heteroskedastic errors are incorrectly assumed to be homoskedastic,

lead to inconsistency of the maximum likelihood estimators in a nonlinear setting (Poirier and Ruud, 1988).

Indeed, MLE is consistent if the conditional density of yn|Xn is correctly specified. Misspecification of the

functional form in a probit context is equivalent to have a misspecification of the Bernoulli probability for each

yi, 1 ≤ i ≤ n.

In a SAE(1)–probit setting, heteroskedasticity will arise whenever the weights Mn induce non–constant

diagonal terms of the matrix Σu = [B′λBλ]
−1

. Indeed, this usually happens even for rather simple choices

of Mn, such as a k-nearest neighbor matrix. Heteroskedastic probit estimators (Case, 1992) that explicitly

consider the diagonal elements of the variance-covariance matrix, i.e. diag (Σu) = diag [B′λBλ]
−1

, remain

consistent. However, the form of heteroskedasticity is generally unknown if it is implied by the spatial

autocorrelation coefficient, see McMillen (1995) and Pinkse and Slade (1998).

In the general case, let Aρ = (In − ρWn) and Bλ = (In − λMn). So we get

y∗n = ρWny∗n + Xnβ + un, Bλun = εn

Bλy
∗
n = ρBλWny∗n + BλXnβ + εn

y∗n = λMny∗n + ρBλWny∗n + BλXnβ + εn, εn ∼ Nn (0n,Σε) (7)

which is known as the Cochrane–Orcutt type transformation (Cochrane and Orcutt, 1949), a model in which

the resulting disturbances are innovations. Even after the Cochrane–Orcutt transformation, both Wny∗n and

Mny∗n are correlated with εn because

E [y∗nε
′
n] = A−1

ρ E [unε
′
n] = A−1

ρ B−1
λ (8)

and these correlations rule out the use of nonlinear least squares methods due to their inconsistency. For the

SARAR(1,1)–probit model in equation (1), and its sub–specification SAR(1)–probit by letting λ = 0, we have

E ((Wny∗n) u′n) 6= 0n where un = B−1
λ εn and E ((Wny∗n) ε′n) 6= 0n, respectively, see Kelejian and Prucha

(1998) and Kelejian and Prucha (1999) in the linear case. Therefore, consistency can only be achieved by

correctly specifying the conditional expected value of model in equation (1).

3.4. Estimation procedures in R

The estimation procedures developed in spatial econometrics are gradually spreading out in the R language,

see e.g. Arbia (2014). With respect to discrete choice models, we found the McSpatial package to be

useful in estimating spatial binary probit models with both the MLE and the Linearized GMM proposed by
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Klier and McMillen (2008). The mvProbit package used the GHK algorithm to numerically approximate

the multidimensional integral, which is unfornunately computationally unfeasible. A fast approximated ML

procedure is proposed by Martinetti and Geniaux (2017) with their package ProbitSpatial. Finally, within

the Bayesian estimation, we recognise the spatialprobit package.

4. Spatial Discrete Choice models in Health

Although a large number of papers dealing with limited dependent variable (LDV) and discrete choice (DC)

models with empirical applications in health economics can be found, those models with an explicit reference

to space and spatial relationships are not so common in the literature mainly because of the peculiarities

and the micro-scale of health data. Modeling economic agent-based spatial relationships will be instead an

approaching problem to be solved since that individual decisions usually depend upon neighboring agents’

decisions. As an example, in the realm of land use modeling, both Sidharthan and Bhat (2012) and Ferdous

and Bhat (2013) have recently stressed that spatial dependence among land development intensity levels is

justified by the interactions between land owners of the corresponding spatial units. That is, land owners of

proximately located spatial units, acting as profit-maximizing economic agents, are likely to be influenced by

each other’s perceptions of net stream of returns from land use development. The same dynamics can occur

between economic agents in the demand for health care utilization.

Observational data are though vulnerable to biases in estimating effects due to non-random selection and

confounding that are avoided in randomized experimental data. In most cases the above-mentioned peculiarities

of health data make us unable to correctly use the econometric techniques which then differ according to

different observed data and they are continuously subject to criticisms and improvements by researchers4.

In the last 20 years, we have had an increased experience in econometric studies as basis of health policy.

As already said, most of them required the use of LDV or DC models to describe health care expenditures,

treatment effects analysis, etc., see e.g. Varin and Czado (2009), Munkin and Trivedi (2008), Santos et al.

(2017), Varkevisser et al. (2012), Lindeboom and Kerkhofs (2009), Deb et al. (2006) and Basu et al. (2007).

However, a very limited number of papers take into account space and spatial structure of discrete health data

sets. Some empirical works considered a distance variable or a spatial dummy variable to distinguish between

districts/regions, see e.g. Geweke et al. (2003), Wolff et al. (2008) and Nketiah-Amponsah (2009), but none of

them used spatial spillover effects by introducing autocorrelation coefficients.

Bolduc et al. (1996a) yet developed a spatial autoregressive multinomial probit model. The hybrid MNP

model approximated the correlation among the utilities of the different locations using a first-order spatial

autoregressive [SAR(1)] process based on a distance decaying relationship. They used a maximum simulated

likelihood (MSL) estimation to describe the effect of various incentive measures introduced in Quebec (Canada)

4See for example Madden (2008) and Norton et al. (2008) for comprehensive debates.
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to influence the geographical distribution of physicians across 18 regions. Other more recent contributions are

those of Bukenya et al. (2003) who proposed a spatial ordered probit model to examine the relationship existing

between quality of life (QOL), health and several socioeconomic variables; Bhat and Sener (2009) instead used

a spatial binary logit model to study teenagers’ physical activity participation levels, a subject of considerable

interest in the Public Health as well as in other fields. Similarly, Sener et al. (2010) proposed a spatial ordered-

response model to estimate physical activity participation levels by including unobserved dependences inside

clusters of observations (i.e. family units) which affects those participation levels and, in the same way, Sener

and Bhat (2012) extended a multinomial model to take spatial effects into the error terms with the motivation

that it is likely the presence of unobserved residential urban form factors (such as good bicycle and walk path

continuity) which may increase participation tendencies in specific activity and unobserved lifestyle perspectives

(such as physically active lifestyle attitudes) that affect activity participation decisions based on the proximity

of teenagers’ residences.

In studies on the demand of health care, health care utilizations, and more in general in all cases in which

we need to describe the individual choices of the health services among different alternatives, it is generally

reasonable to assume that there are unobserved factors, which are correlated among geographical units or

among individuals who are proximal in space, as it is frequently the case in health. For instance, in Nketiah-

Amponsah (2009) it is likely that unobserved factors such as tobacco and alcohol consumptions are correlated

over space since it is almost certain that individuals, especially among the youngest, have social interaction

effects on the others who live in the neighbor areas. This correlation information can be taken into account

by specifying a simple spatial error structure of the discrete choice model, which can be used to improve

coefficient estimates by avoiding inconsistent estimates5 and leading to a correct inference approach. In Bolduc

et al. (1996b), individuals’ utility functions, which are generally described by individuals’ choices of health

care services, can be autocorrelated in space due to social interaction effects between those individuals who are

proximal in space, that is individuals’ choices are also likely to be determined by neighbor individual opinions.

Also in child labor (Wolff et al., 2008) and child mortality (Iram and Butt, 2008) studies, it is not to exclude the

possibility of specifying a spatial autoregressive discrete choice structure, since it is reasonable to assume the

presence of autocorrelation between health status among children who lie within the same neighborhood. In the

same way, it could be interesting to see if there are spatial interaction effects among child labor choices taken by

individuals (i.e. parents’ choices) who are in the closeness. Gravelle et al. (2014) used a spatial autoregressive-

regressive (SAR) model in order to detect if a hospital’s quality level depends on its rivals’ quality levels in

a competitive setting. The main finding was that hospitals’ quality levels are positively autocorrelated over

space and then geographical proximity plays a paramount role in describing hospitals’ competition. One way

in which hospitals can raise their quality is surely the adoption of advanced technologies. In this context,

5The problem of inconsistency in spatial binary nonlinear models is referred to Section 3.3.

14



it is then reasonable to assume that hospitals closed in space, which are competitive in terms of technology

adoptions, share information about the quantity and the quality of their qualified technologies, which in turn

have an impact on the hospitals’ attractive potential of patients.

Spatial dependence is indeed inherent in many aspects of human-decision-making, with the choice decisions

of one individual being affected by those of other individuals who are proximal in space. The importance of

such spatial dependence has been recognized in a variety of disciplines. In recent years, it has become more

common to include social interactions or neighborhood effects (i.e. social network effects) also in discrete choice

models (see Goetzke and Andrade (2010) Li and Lee (2009) Páez et al. (2008) Brock and Durlauf (2007)). In

particular, Goetzke and Andrade (2010) stressed the need to include social interactions and correlated effects

in mode choice models as one combined spatial spillover variable for two reasons: spatial spillover serves the

purpose to avoid a possible omitted variable bias, and, in addition, the spatial spillover variable can be seen

as a proxy for the mode-friendliness in the neighborhood. As also Rosenquist and Lehrer (2014) stressed, if

such influences are ignored estimates of the impact of policy interventions will in many cases be biased because

they neglect the indirect pathway that occurs due to spillovers or what is known as the social multiplier effects.

This should be a tempting prospect also in applied health economics, even more so microeconomic geo-referred

data will become more and more available in the near future.

5. Conclusions

Accounting for spatial autocorrelation in the discrete or limited dependent variable is a fundamental

challenge in the econometrics literature. One of the most important reasons for the relatively scarce diffusion

of these models is certainly their complexity, often requiring MSL or Bayesian algorithms to estimate them. To

this purpose, some methodological and computational solutions have been proposed, but the aim of developing

“best” estimators is still unreached. As expected, we have found that only a small number of papers use

the above-mentioned models with the purpose to solve health economics issues, emerging the need to first

understand the potential of these models in this applied field. This was one of the aims of the present paper.

Most of the sample sizes used in health empirical applications are of the order of millions of observations

because of their micro-scale nature. Indeed, Bell and Dalton (2007) highlighted the problem of specifying a

weighting matrix for micro-scale or individual data, in which the difficulties are related to correctly describe all

the relationships among economic agents. Data of this kind will become more and more available in the near

future and probably we will not be ready to manage them or, even worse, to correctly use the whole amount

of information. Filling this gap in the literature will surely lay the foundations for the development of Spatial

Microeconometrics.
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