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Abstract

This paper examines the complex dependence between the peak district heating

demand and the outdoor temperature. The final aim is to provide the probability

law of the heat demand given extreme weather conditions and derive useful impli-

cations for the management and the production of thermal energy. We propose a

copula-based approach and consider the case of the district of the city of Bozen-

Bolzano. The analysed data concerns daily maxima of heat demand observed from

January 2014 to November 2017 and the corresponding outdoor temperature. We

find that the marginal behavior of the univariate time series of the district heating

demand and the temperature is well-described by autoregressive integrated moving

average models. Moreover, the selected copula model exhibits a symmetric depen-

dence between the two investigated phenomena that tend to comove closely together

during the whole heating season. Taking into account the conditional behaviour of

the heat demand given the temperature leads to find that the demand is strongly

affected by the temperature and, in case of extreme climatic events, the demand of

thermal energy reach a peak with high probability. These findings motivate for im-

proving the production schedule, the system design, and the operational strategies.

Keywords: ARIMA models, Copula function, Conditional probability, District

heating system, Outdoor temperature, Peak heat demand.
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1 Introduction

The global demand for energy has increased rapidly in the twentieth century leading to

the current energy systems based on fossil fuel [47, 30]. The energy demand is predicted to

increase by over 50% within 2030 considering the current energy consumption trend [46].

This situation is aggravated by correlated phenomena, such as the climate change scenario,

the increase of greenhouse emissions and the limited nature of the conventional fuels, such

as natural gas and oil. In response to the current scenario, there is the necessity to promote

energy conservation and efficiency, and new technology introduction [48]. A future energy

system, which is based on renewable sources, e.g. solar and wind, and on leftover resources,

e.g. biomass and waste, has been identified as the only feasible way to overcome the serious

problem of the impact of energy production on the environment [29, 28, 32, 4].

Recent studies [1, 43, 11] argue that the district heating system (DHS, hereafter),

which is a system for distributing heat widely employed in many countries such as Den-

mark and Sweden, has a key role to achieve a sustainable energy system. Thus, the

researchers increased their efforts to develop energy efficiency solutions based on DHSs,

such as renewable sources integration [38], energy recovery [35], system modeling [14] and

optimization [51], production schedules and operating strategies [50]. Nevertheless, the

greatest efforts focused on the issues of the supply side and only little attention has been

paid to the consumer side [31]. On the contrary, the accuracy of the heat demand models

has a relevant influence on every step of the development of the DHSs, like investments

planning, system design, operational strategies and controls. For such reason, the research

interest on the heat demand analysis represents a crucial challenge and it has recently

been growing as underlined by several authors [22, 23, 39, 40, 41, 26, 12, 26, 31].

The main factors that affect the heat demand are building’s features, technical charac-

teristics of DHSs (e.g., kind of pipelines, power plants, exchange substations) and meteoro-

logical and the socio-economic conditions. Among these factors, the weather, that can be

taken into consideration in different ways, e.g. solar radiation, wind speed, temperature,

etc., is one of the most relevant [31, 52].

A deep knowledge of the heat demand and its relationship with the weather is cru-

cial for having a reliable forecasting of heat request. Therefore, many approaches have

been proposed [47, 40, 31], and many focuses on the investigation of the association be-

tween heat demand and outdoor temperature. Dotzauer [13] presents a simple forecasting

model using two functions for modeling temperature and social component, respectively,

and estimated through a linear least squares method with linear constrains. Popescu et

al. [37] propose an enhancement of the method in [13] analysing three different multivari-

ate regression models by varying the set of covariates involved, like solar radiation and

indoor/outdoor temperature. Amjady [3] introduces a modified autoregressive integrated
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moving average (ARIMA, hereafter) for a short-term forecasting of daily peak load by

taking into account the temperature. Other works use a two-stage approach that, firstly,

performs a functional clustering procedure with the aim to classify the heat load profiles

and, secondly, a functional linear regression model for peak load forecasting [20, 16]. An-

other data-driven approach used especially for short-term forecasting is based on machine

learning methods, such as support vector machine [53], regression tree, neural network [25]

and multivariate linear regression [8].

Despite the increase of studies in heat demand forecasting, in the literature there

are two important lacks: i) a proper investigation of the complex relationship among the

heat demand and environmental factors, such as outdoor temperature, and ii) an in-depth

analysis of pick heat demand caused from extreme climatic events. To face with these

two gaps we propose a copula-based approach with the aim at providing probabilistic

information on the peak heat demand in an innovative way.

The performed analysis consists into three steps. The first step concerns the analysis

of the serial correlation of heat demand and outdoor temperature time series through

seasonal autoregressive integrated moving average (SARIMA, hereafter) model. The sec-

ond step investigates the dependence relationship between the two series of uncorrelated

ARIMA residuals by using copula models. Once a specific dependence structure is found,

the probability of a peak heat demand is derived in the third step of the analysis through

the copula-based conditional probability function of heat demand given an outdoor tem-

perature. This procedure is applied to the data concerning the city of Bozen-Bolzano

(Italy) that have been detected through the heat exchanger substations of the DHS and

one weather station. The daily peak demand and the corresponding outdoor temperature

have been observed for three different groups of consumers: all types of DHS’s consumers,

the residential consumers, and the residential consumers of space heating (without hot

water).

To the best of our knowledge, the proposed approach has never been applied to peak

heat demand data. Similar approaches have been used in different contexts. Among

others, [2] investigate the dependence between crude oil and natural gas prices, [36] anal-

yse the dependence between wind power production and electricity prices, [7] analyse

the climatic impact on floods, and [44] employ a copula autoregressive methodology for

analysing the wind speed and direction.

The paper is organized as follows. Section 3 describes the collected and analysed data.

Section 2 presents the statistical modeling strategy. Section 4 focuses on the empirical

analysis and discusses the findings. In Section 5 concluding remarks are provided.
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2 Statistical modeling

The used methodology consists of three steps. Firstly, the marginal probability distribu-

tion of the two variables of interest, heat demand and outdoor temperature, are estimated.

We fit a SARIMA model for time series using the Box&Jenkins procedure [5]. Thus, we

account for the non-stationarity of each time series and we model the serial dependence

structure in the two series taken separately. Next, the residuals of the two estimated

models for univariate time series are computed. Being not autocorrelated, they make it

possible to resort to copula theory. Indeed, in the second step of the analysis we model

the complex cross-dependence relationship between the heat demand and the temperature

through an appropriate copula. Finally, we derive the conditional probability function of

the heat demand given the outdoor temperature to provide the probability law of the

demand according to extreme climatic events.

2.1 Marginal distribution modeling

To analyse the serial dependence of historical temperature and heat demand we employ

the well-known SARIMA models that make it possible to capture both trend (seasonal

and not) and autocorrelation. We analyse the two time series taken separately by applying

the Box&Jenkins procedure [5], which is the most frequently used due to its simplicity

and generality. The SARIMA(p, d, q)(P,D,Q)s model is as follows:

φp(B)ΦP (Bs)∇d∇D
s Zt = θq(B)ΘQ(Bs)εt (1)

where εt ∼ WN(0, σ2
ε) is the classic white noise process with variance σ2

ε , φp(B) =

1 − φ1B − φ2B
2 − · · · − φpB

p (ΦP (Bs) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦpB
Ps) is the

autoregressive (seasonal autoregressive) polynomial in B of grade p (P ), θq(B) = 1 −
θ1B − θ2B2 − · · · − θqBq (ΘQ(Bs) = 1 − Θ1B

s − Θ2B
2s − · · · − ΘQB

Qs) is the moving

average (seasonal moving average) polynomial in B of grade q (Q), and ∇d = (1 − B)d

(∇D
s = (1− Bs)D) is the difference (seasonal difference) operator of order d (D). Hence,

the identification of the values p, P, q,Q, d,D makes it possible to identify a specific model

and to proceed with its estimation.

We firstly check for the non-stationarity of the time series and eventually remove the

(linear and seasonal) trend over time by applying the above introduced difference and

seasonal difference operators. Next, the identification of the specific SARIMA models

is made by using both a graphical tool, i.e. the plot of the autocorrelation and the

partial autocorrelation functions of the differentiated series, and the Student-t test on the

estimated coefficients. Once a SARIMA model is selected and estimated, the analysis of

residual time series is performed. Since we are interested in applying the copula theory,
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we check that residuals are not autocorrelated and we perform the t-Student test on the

autocorrelation function by varying the lag and the Ljung-Box test.

2.2 Dependence structure modeling

Copula function is born with Sklar’s theorem [45] that states that every joint distribution

function F (·) can be expressed in terms of K marginal distribution functions Fk, with

k = 1, . . . , K and the copula distribution function C(·) : [0, 1]K → [0, 1] as follows:

F (x1, . . . , xk, . . . , xK) = C(F1(x1), . . . , Fk(xk), . . . , FK(xK)) (2)

for all (x1, . . . , xk, . . . , xK) ∈ R̄K (where R̄ denotes the extended real line). Hence, copula

is aK-dimensional cumulative distribution function (cdf, hereafter) with standard uniform

margins. The above theorem is at the origin of the increasing use of copulas for modeling

multivariate continuous distributions. According to the Sklar’s theorem, we can split any

joint probability function f(·) into two independent parts as follows:

f(x1, . . . , xk, . . . , xK) = c(F1(x1), . . . , Fk(xk), . . . , FK(xK))
K∏
k=1

fk(xk) (3)

where fk(·) with k = 1, . . . , K are the margins and c(·) is the copula that represents the

association among variables, e.g. the multivariate dependence structure of a joint density

function [49, 33, 15, for details]. The log-likelihood function of f(·) is, thus, composed of

two positive terms as follows:

l(θ) =
n∑
i=1

log c {F1 (X1i) , . . . , Fk(Xki), . . . , FK (XKi) ; θ}+
n∑
i=1

K∑
k=1

log fk (Xki) (4)

where the first term involves the copula density and its parameter θ and the second

one involves marginal densities and their parameters. Such separation determines the

modeling flexibility given by the copulas. Indeed, beyond the fully maximum likelihood

method [10, p.154], which estimates simultaneously both the parameters for the margins

and those of the copula, it is possible to decompose the estimation problem in two steps:

the first one for the identification of the marginal distributions and the second one for the

specification of the appropriate copula model [49, Chapter 4]. It, thus, makes it possible

to use any combination of estimation methods for the univariate distributions and the

copula. In two-stage maximum likelihood estimation methods, the marginal parameters

are estimated in the first step and are used to estimate the dependence parameter of the

copula function in the second step. Here we focus on its semi-parametric version [17] where

margins are modelled through the empirical cdf F̂k (Xki) computed from Xk1, . . . , Xkn,
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with k = 1, . . . , K. Then, the copula parameter is estimated through the pseudo-likelihood

approach that consists of maximizing the log pseudo-likelihood as follows:

θ̂ = arg max
θ

n∑
i=1

log c
{
Û1i, . . . , Ûki, . . . , ÛKi; θ

}
(5)

where Ûki = nF̂k (Xki) /(n + 1) and n/(n + 1) is the scaling factor classically introduced

to avoid problems at the boundary of [0, 1]K and it is equivalent to Ûki = Rki/(n + 1)

where Rki is the rank of Xki among Xk1, . . . , Xkn.

Since we are interested in investigating the complex relationship between heat demand

and outdoor temperature with the final aim of investigating the demand given extreme

weather condition, we introduce the conditional copula function. Given a two dimensional

copula C(·) with margins U1 and U2, [54] demonstrate that Bayes Rule can also be used

to recover conditional copula as follows:

Cu1|u2(u1, u2) =
C(u1, u2)

u2
.

Similarly, the conditional probabilities P (U1 > u1|U2 < u2) and P (U1 > u1|u21 < U2 <

u22) computed through the copula, which are more interesting for our analysis, can be

expressed as follows:

P (U1 > u1|U2 < u2) =
u2 − C(u1, u2)

u2
(6)

P (U1 > u1|u21 < U2 < u22) =
u22 − u21 − C(u1, u22) + C(u1, u21)

u22 − u21
. (7)

Copula models

Here the attention focuses on one-parameter bivariate copulas. In the literature, many

different bivariate copula models are available. For a review see [33, 15]. The families

considered here are Clayton, Frank, Gumbel, Plackett, Joe, Gaussian, and Student-t, as

well as rotated versions of the Clayton, the Gumbel and the Joe copulas. The Elliptical

(Gaussian and Student-t) and the Archimedean (Clayton, Frank and Gumbel) families

are mostly used but Placket and Joe copulas have been widely used as alternatives to the

bivariate Gaussian and Gumbel copula, respectively [24, see, e.g.]. Moreover, the rotation

by 90 and 270 degrees leads to the rotated copulas can be obtained using [6]:

C90(u1, u2) = u2 − C(1− u1, u2) (8)

C270(u1, u2) = u1 − C(u1, 1− u2) (9)

where uk = Fk(xk) with k = 1, 2. Note that here we apply the above rotations only to

the Clayton, the Gumbel and the Joe copulas and we do not consider the rotation by
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180 degrees since, coherently with the dependence structure of the empirical data, we

need to capture a negative dependence, i.e. a dependence in the left upper corner and in

the right bottom corner (see, for details, the Section 4). We, thus, cover a large set of

multivariate features that include asymmetries and heavy tails. The families considered

here are defined in Table 1 and displayed in Fig. 1. According to a copula model, the

value of θ has a specific meaning. However, it is always true that the greater the value of

the dependence parameter, the stronger the association among the margins.
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Copula model specification and quantile dependence

An important issue is the specification and the selection of the copula model. Nowadays,

there is a large number of procedures proposed in the literature to test a copula. See [9, 18]

for extensive reviews.

To compare different models, following [34], we perform the goodness-of-fit test (GOF,

hereafter) by [18] and the leave-one-out cross-validation method (CV, hereafter) devel-

oped for copulas [21]. Moreover, we employ the well-known following Akaike information

criterion (AIC, hereafter):

AIC(h) = −2LL + 2h (10)

where LL is the logarithm of the maximized likelihood function of the estimated copula

model, h is the total number of parameters, which is different from one only for the

Student-t copula, where h = 2. Moreover, in order to test of multivariate extreme-value

dependence we employ two tests. One is defined in [19] and it is based on the bivariate

probability integral transformation. The other one has been proposed by [27, 42] and

it is based on the empirical copula and max-stability, where the approximate p-value is

obtained by means of a multiplier technique.

Another useful exploratory method is based on the comparison between the quantile

dependence of the empirical data with that of parametric models. The quantile depen-

dence [34, 36] for negatively dependent variables is defined as follows:

λq̃L = P(U1 ≤ q̃|U2 ≥ 1− q̃) for q̃ ∈ (0, 0.5] (11)

λq̃U = P(U1 > q̃|U2 < 1− q̃) for q̃ ∈ (0.5, 1) (12)

where λq̃L is the lower quantile dependence and λq̃U is the upper quantile dependence that,

computed at different quantiles q̃, provide a richer description of the dependence structure

within the data. This can help narrow down the set of possible parametric copulas to a

collection of models that are able to capture some of the characteristics we observe in the

data.

3 The data sets

The data set collected in this work concerns the heat demand of consumers connected to

the DHS of the city of Bozen-Bolzano (Italy) and the outdoor air temperature as detected

by the S. Maurizio weather station. The period of observation goes from September 2014

to August 2017.

Bozen-Bolzano is a city of about one hundred thousand residents, located in the north-

ern part of Italy in a region characterised by alpine weather conditions. The actual DHS
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Figure 1: Contour plots of the (bivariate) copula models defined in Table 1 with standard

Gaussian margins and a Kendall’s τ coefficient of 0.7. Upper panel (from left to right):

Gaussian and Student-t copula models. Lower panel (from left to right): Frank and

Plackett copula models.

10



 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4 

−3 −2 −1 0 1 2 3
−

3
−

2
−

1
0

1
2

3

 0.05 

 0.1 

 0.15 

 0.2 

 0.25 

 0.3 

 0.35 

 0.4 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 2: Contour plots of the rotated versions of (bivariate) Clayton copula models

defined in Table 1 with standard Gaussian margins and a Kendall’s τ coefficient of 0.7

or −0.7, according to the rotation. From left to right: Clayton, rotated Clayton by 90

degrees, rotated Clayton by 270 degrees.

of Bozen-Bolzano consists of a production branch that includes a waste-to-energy plant

with a capacity of thermal 32 MW , a combined heat and power production with two

methane combustion engines, each one having a thermal capacity of 1.85 MW , and a 6

backup boilers with a total thermal capacity of 11.5 MW . Moreover, a thermal storage

with capacity of 5850 m3 has been installed from October 2016 and the distribution net-

work of about 18 Km is continuously in expansion. This DHS feeds about 3.500 flats and

100 industrial-commercial outlets exchanging heat power from the distribution network

to consumers through about 200 thermal exchange substations.

Given the gradual increase in the number of connections of the DHS, starting from

155 substations in 2014 to 194 in 2017, the analysis performed in this paper focuses on

the sample of 110 substations with a complete time series. Each substation detects the

heat demand every 15 minutes. The selected 110 time series of heat demand have been

filtered out of the data affected by measurement’s error, i.e. values greater 1.1 times

than the maximum thermal power for each exchanger substation. In addition, 5 days

of observations (2014-11-30, 2014-12-13, 2016-02-12, 2016-02-22, and 2017-01-03) have

been undetected and, therefore, deleted from the time series. Next, we have opportunely

aggregated, i.e. averaged, the data to obtain hourly observations. As for the meteorolog-

ical data, the S. Maurizio’s weather station detected the outdoor temperature every 10

minutes; thus, we computed the average of data to obtain hourly observations.

Since the focus of this paper is the relationship between extreme temperature and peak

heat demand, we perform the analysis on the maximum hourly total heat demand per day

and the corresponding outdoor temperature. The first data set we analyse, called Total
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Demand (TD, hereafter), contains data of 110 substations concerning all the types of

consumers. Additionally, other two data sets have been analysed. One, called Residential

Demand (RD, hereafter), is a subset of the TD data set and contains the data detected

by 59 exchanger substations of residential users only. The other one, called Space Heating

Residential Demand (SHRD, hereafter), is a subset of the RD data set and it is composed

by the data coming from the 19 substations devoted exclusively for the space heating

demand of residential users.

Finally, we have split the data in heating season and non-heating season, due to the

relevant differences of impact factors driving the heat demand in the two periods. Indeed,

the heating seasonal consumption is principally affected by buildings’ characteristics and

microclimate features, such as outdoor temperature, humidity, wind speed and solar ra-

diation. On the other side, the non-heating seasonal consumption is mainly affected by

the occupant behaviour (indoor condition). Hence, we focus the attention on the heating

season, when the consumption of thermal energy increases and the highest peaks of heat

demand are observed. To identify the heating season we select the threshold correspond-

ing to the point where a sharp change in the quantile function of the heat demand occurs.

Fig. 3 shows the quantile plot of the heat demand in the TD (left), the RD (middle), and

the SHRD (right) data set. For all the three data sets, the selected threshold corresponds

to the 45th percentile. The heating season data is, thus, identified by selecting the values

greater or equal to the threshold 2860.4 kW for the TD, 2404.9 kW for the RD, and

797.5 kW for the SHRD data set, respectively. Note that from now on the acronyms TD,

RD, and SHRD will be used to indicate the three data sets defined above but referred

only to the heating season data.
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Figure 3: Quantile plot for selecting the threshold of the heat demand (thermal power in

kW) to identify the heating season in the TD data set (left), the RD data set (middle)

and the SHRD data set (right).
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4 Empirical illustrations

In this Section we apply the statistical procedure introduced in Section 2 for analysing

the heat demand of the DHS of the city of Bozen-Bolzano.

4.1 Peak heat demand modeling for TD data set

In order to study the TD data set, we perform an analysis into three main steps as de-

scribed in Section 2. First, we model the univariate time series of the peak heat demand

(PHD, hereafter) and outdoor temperature (OT), taken separately, through the SARIMA

modeling and, next, we obtain the corresponding residual time series. Second, the de-

pendence analysis between PHD and OT is carried out by copula theory. Finally, the

conditional dependence of PHD given OT thought copula is hereby provided to evaluate

the impact of extreme climatic events on the heat demand.

Fig. 4 gives an overview of the relationship between the two variables under investiga-

tion observed in the whole TD data set (left plot) and in the heating season TD data set

(right plot). The Kendall’s correlation coefficient between OT and PHD observed dur-

ing the heating season is τ̂ = −0.65, p-value < 0.001 (Pearson’s correlation ρ = −0.84,

p-value < 0.001 and Spearman’s correlation ρS = −0.85, p-value < 0.001), indicating a

significant negative relationship between the two variables.
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Figure 4: Scatter plots of PHD in kW (x-axis) versus OT in C◦ (y-axis) of the whole TD

data set (left) and of the heating season TD data set (right).
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4.1.1 Marginal distribution modeling

Following the Box&Jenkins procedure for both the heat demand and the outdoor tem-

perature, we estimate a SARIMA model for each variable taken separately to obtain

the corresponding uncorrelated residual time series. On the basis of the autocorrela-

tion function and the partial autocorrelation function at lag 1, . . . , 60, we check for the

non-stationariety of the two time series (see Fig. 5). The autocorrelation function of

PHD presents a slight negative linear and seasonal trend meaning that there is a non-

stationarity in the mean of the series, while the OT series shows only a linear trend. Both

the time series are stationary in variance (range-mean plots do not shown here). We
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Figure 5: Preliminary time series analysis: plot of time series, autocorrelation function

and partial autocorrelation function of PHD (upper panel) and OT (lower panel). Data

set: TD, heating season.

remove the non-stationarity using the difference operator with d = 1 and the seasonal

difference operator with D = 1, lag = 7 for the PHD series and the difference operator

with d = 1 for the OT series. Fig. 6 shows the resulting stationary time series. We specify

a SARIMA(0, 1, 2)(0, 1, 1)7 model for the PHD series. The estimated model results:

∇1∇1
7Zt = (1 + 0.2915B + 0.1571B2)(1 + 0.5673B7)εt (13)
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Figure 6: Plots of time series, autocorrelation function and partial autocorrelation func-

tion of the stationary PHD (upper panel) and OT (lower panel) series. Data set: TD,

heating season.

As for the OT series, we specify an ARIMA(0, 1, 2) model using a forward selection

procedure of the coefficients of the starting model ARIMA(5, 1, 2). The estimated model

results:

∇1Zt = (1 + 0.4013B + 0.1884B2)εt (14)

The goodness of the two estimated models is verified through the analysis of the residuals.

Fig. 7 shows the residuals of the PHD and OT series, respectively on the left and on the

right panel. In particular, we can see that the autocorrelation coefficient of residuals is

not significantly different from zero with p-value < 0.05 at every considered lag. Thus,

the estimated SARIMA models are able to catch the serial dependence since the residuals

can be considered as realization of white noise stochastic processes.

The Fig. 8 shows the scatter plot of the residuals with the histogram of their univariate

distribution on the left, and the scatter plot of the pseudo-observations of the two residual

series on the right. The Kendall’s correlation coefficient between the PHD and OT residual

time series is τ̂ = −0.35 with p-value < 0.001 (Pearson’s and Spearman’s correlation

results, respectively, −0.49 and −0.5 both with p-value < 0.001). The observed negative
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Figure 7: Autocorrelation function and Ljung-Box test on the residuals of the estimated

SARIMA models for the PHD (upper) and OT (lower) series. Data set: TD, heating

season.

dependence relationship between the two obtained residual series motivates and supports

the use of the copula theory to investigate the complex relationship between peak heat

demand and outdoor temperature.

4.1.2 Dependence structure modeling

In this section we carry out the analysis of the bivariate dependence between the PHD

and OT time series of residuals. As reported in Section 2.2, only one-parameter bivariate

copula models are taken into account. Precisely, we estimate the copula models belonging

to the Elliptical and Archimedean families, and the Plackett and the Joe copulas (see

Table 1 for technical details). We remind that we work with both symmetric copulas (the

Frank, the Gaussian, the Student-t and the Plackett) and asymmetric copulas (the rotated

Clayton 90◦, the rotated Clayton 270◦, the rotated Gumbel 90◦, the rotated Gumbel 270◦,

the rotated Joe 90◦ and the rotated Joe 270◦). Note that the Clayton, the Gumbel and

the Joe copulas are taken into account only in theirs rotated versions due to the negative

association observed between the residuals of the PHD and OT series.

The considered copula models have been estimated through the pseudo-maximum

likelihood method (by using the R package copula). To select the best copula model

among the ten we employ different tools: LL, AIC, GOF and CV. In addition, we test for

an extreme-value copula through the test in [42] and [27], which both gives a p-value <
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Figure 8: Scatter plot of the PHD residuals (x-axis) versus the OT residuals (y-axis) with

their histogram (left) and scatter plot of the pseudo-observations of the OT residuals

versus the PHD residuals (right). Data set: TD, heating season.

0.001 leading to reject the null hypothesis of a bivariate extreme-value copula. The

estimation results are presented in Table 2. In the light of the obtained results, the best

copulas are the Plackett (for the GOF test) and the Student-t with 6.93 degree of freedom

(for all the other criteria) with the estimated value of the dependence parameter equals,

respectively, θ̂ = −0.51 (corresponding to τ = −0.357) and θ̂ = 0.19 (corresponding to

τ = −0.344). Due to the slight ambiguity of these results we also produce the quantile

dependence plot in Fig. 9 for the empirical distribution of the data and the four copula

models with the best results in terms of AIC, CV and GOF. On the basis of this plot,

the Student-t copula appears to be the only one able to catch the behaviour on the tails,

even though the Plackett copula better models the middle of the distribution. Overall,

we select the Student-t copula. The simmetry of the selected copula tells us that the

two investigated phenomena tend to comove closely together during the whole considered

period with a mild dependence.

4.1.3 Conditional probability function

In this Section we exploit the findings about the dependence structure between the peak

heat demand and the outdoor temperature to investigate the behaviour of the demand

conditionally to a certain value of the temperature. To do that, we employ the conditional
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Copula θ̂ LL AIC p-value GOF CV

Gaussian -0.50 85.67 -169.34 0.141 84.32

Student-t -0.51 91.96 -179.92 0.140 90.46

Frank -3.58 87.21 -172.42 0.469 86.07

Plackett 0.19 90.66 -179.32 0.628 89.60

Clayton (270◦) 0.72 65.96 -129.92 < 0.001 63.72

Clayton (90◦) 0.74 71.40 -140.80 < 0.001 68.91

Gumbel (270◦) 1.48 83.78 -165.56 0.002 81.73

Gumbel (90◦) 1.47 82.30 -162.59 < 0.001 80.29

Joe (270◦) 1.62 65.20 -128.39 < 0.001 62.51

Joe (90◦) 1.59 60.87 -119.74 < 0.001 58.32

Table 2: Results of copula models estimated on the SARIMA residuals of the PHD and

OT time series of the TD data set: estimated dependence parameter (θ̂) and evaluation’s

criteria (LL, AIC, p-value GOF, CV).

probability functions defined in eq. (6) and eq. (7) where U1 is a uniform variable given

by the probability integral transform of the residual PHD time series and U2 is a uniform

variable given by the probability integral transform of the residual OT time series. In par-

ticular, we investigate the probability of a peak demand, e.g. a demand greater than the

70th percentile of U1, given an extreme value or a range of extreme values for the tempera-

ture. Fig. 10 shows the copula-based conditional probability function P (U1 > u1|U2 < u2)

in eq. (6), where u1 ∈ [0, 1] and u2 = (0.01, 0.05, 0.10, 0.15). Clearly, the probability that

the heat demand is greater than a certain value increases as soon as the outdoor tem-

perature becomes more and more extreme. The conditional probability function shows

a negative exponential behaviour and, when u1 > 0.7 (> 13813, 75 kW), it passes from

0.631, when the temperature is smaller than its 15th percentile (−2.477C◦), to 0.819

when the temperature is smaller its 1st percentile (−6.713C◦). The probability of having

a demand greater than its 70th percentile increases of 1/3 as soon as the temperature de-

creases of about 4C◦. Moreover, considering an interval value for the temperature, we find

that P (U1 > 0.7|0 < U2 < 0.01) = 0.819 and, e.g., P (U1 > 0.7|0.10 < U2 < 0.15) = 0.543.

Thus, the investigated probability almost halves with a slight increase of the interval

for U2, i.e. for the temperature. Coherently to what we found above, the conditional

probability of interest decreases as soon as the values for U2 increases.

To sum up, we stress that the demand of heating is strongly affected by the outdoor

temperature and extreme values for the OT determine a high heat demand with high

probability. Moreover, an approach based on the dependence relationship between the two
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Figure 9: Estimated quantile dependence plot for quantile q̃ ∈ [0.025, 0.975] and a size

step of 0.025 implied by the empirical TD data set and the four best estimated copula

models among the ones in Table 1.

phenomena of itnerest is extremely important, since under independence the investigated

conditional probability is strongly underestimated, e.g. P (U1 > 0.7|u21 < U2 < u22) = 0.3

irrespectively of the climatic situation.

4.2 Analysis of the RD and SHRD data sets

In this Section we briefly present the results obtained by applying the previously described

and shown procedure to the RD and SHRD data sets. Also here we focus the attention

on the heating season that is identified by using the quantile plot given in Fig. 3.

The diagnostic plots of the autocorrelation and the partial autocorrelation function

lead to the identification of a SARIMA(2, 1, 1)(0, 0, 2)7 model for the PHD time series

and an ARIMA(4, 1, 1) model for the OT time series. Both these models shows some

coefficients not significant. On the basis of a forward procedure based on the p-value of

the Student-t test on coefficients and on the principle of parsimonious, the final identified

models are ARIMA(0, 1, 1) for the PHD and ARIMA(1, 1, 1) for the OT series. In ad-
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Figure 10: Copula-based conditional probability function in eq. (6) with u1 = 0.7. Data

set: TD, heating season.

dition, the Kendall’s, Pearson’s and Spearman’s correlation coefficients are, respectively,

−0.50, −0.39 and −0.54 (p-value < 0.001 for all the three). Table 3 shows the results

of the estimation of the copula models in Table 1 for the RD data set. Fig. 11 shows in

the left upper plot the quantile dependence of the four copula models that better fit the

empirical RD data set. In addition, both the tests by [42] and [27] gives a p-value < 0.001

leading to reject the null hypothesis of a bivariate extreme-value copula. The analysis of

the dependence structure highlights that the Plackett copula fits better than the other

ones. The estimated parameter of the Plackett copula results 0.15, which corresponds

to the Kendall’s coefficient τ̂ = −0.402. Interestingly, both the quantile dependence and

the conditional probability function computed for the RD data set (see Fig. 11, right

upper panel) exhibit a shape different from the one found for the TD data set. Here, the

probability of having a high heat demand increases more slowly than that of the TD data

set. Indeed, when u1 > 0.7 (> 9355.09 kW), it passes from 0.669, when the temperature

is smaller than its 15th percentile (-2.477) , to 0.734 when the temperature is smaller the

its 1st percentile (−6.713C◦). Hence, we can argue that the heat demand for residential
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Copula θ̂ LL AIC p-value GOF CV

Gaussian -0.53 94.55 -187.10 0.037 92.30

Student-t -0.56 112.51 -221.03 0.290 110.26

Frank -4.06 106.33 -210.66 0.109 105.10

Plackett 0.15 113.60 -225.19 0.247 112.52

Clayton (270◦) 0.78 71.09 -140.18 < 0.001 68.09

Clayton (90◦) 0.88 88.22 -174.43 < 0.001 85.09

Gumbel (270◦) 1.56 103.88 -205.75 0.003 101.49

Gumbel (90◦) 1.54 93.48 -184.96 < 0.001 90.77

Joe (270◦) 1.75 85.06 -168.12 < 0.001 82.02

Joe (90◦) 1.66 66.80 -131.60 < 0.001 63.57

Table 3: Results of copula models estimated on the SARIMA residuals of the PHD and

OT time series of the RD data set: estimated dependence parameter (θ̂) and evaluation’s

criteria (LL, AIC, p-value GOF, CV).

buildings (of both space heating and hot water) is less sensitive to a change in the outdoor

temperature than the heat demand for both residential and non-residential buildings (e.g.

industrial buildings, sporting centres, and so on).

Copula θ̂ LL AIC p-value GOF CV

Gaussian -0.47 72.82 -143.64 0.103 71.23

Student-t -0.49 83.84 -163.68 0.260 81.96

Frank -3.40 79.27 -156.56 0.097 78.09

Plackett 0.20 83.66 -165.32 0.244 82.62

Clayton (270◦) 0.65 54.51 -107.03 < 0.001 51.95

Clayton (90◦) 0.70 65.24 -128.49 < 0.001 63.03

Gumbel (270◦) 1.44 75.72 -149.44 < 0.001 73.73

Gumbel (90◦) 1.44 70.60 -139.19 0.001 68.31

Joe (270◦) 1.58 59.85 -117.71 < 0.001 57.43

Joe (90◦) 1.54 50.47 -98.93 < 0.001 47.64

Table 4: Results of copula models estimated on the SARIMA residuals of the PHD and OT

time series of the SHRD data set: estimated dependence parameter (θ̂) and evaluation’s

criteria (LL, AIC, p-value GOF, CV).

The SHRD data set contains the information on the heat demand concerning only

the space heating of the residential buildings. In this case, the identified SARIMA mod-
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Figure 11: Quantile dependence plot (left) for quantile q̃ ∈ [0.025, 0.975] and a size step

of 0.025 implied by the empirical data and the four best estimated copula models among

the ones in Table 1 and conditional probability function in eq. (7) with u1 = 0.7 (right)

for the RD (upper) and the SHRD (lower) data sets.

els obtained applying the Box&Jenkins procedure are the ARIMA(2, 1, 3) for the PHD

series and SARIMA(4, 1, 1)(1, 0, 0)7 for the OT series. Following a forward procedure

based on the p-value of the Student-t test on coefficients, we obtain as final models an

ARIMA(0, 1, 1) and an ARIMA(1, 1, 1) for the PHD and OT series, respectively. The

Pearson’s, the Kendall’s and the Spearman’s correlation coefficient result −0.42, −0.33

and −0.47, respectively, with a p-value < 0.001 for all the three. The results of the de-

pendence analysis between the residuals of the two estimated ARIMA models (see Tab. 4)
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provide evidence for both the Student-t and the Plackett copula models with really similar

values for all the three selection criteria used. On the basis of the quantile dependence

(see Fig. 11, lower left plot) the Plackett copula appears to better fit the left tail depen-

dence. The copula parameter for the Plackett results 0.2 that corresponds to a Kendall’s

τ̂ = −0.347. Also here, the tests for an extreme-value copula proposed by [42] and [27]

give a p-value < 0.001 leading to reject the null hypothesis of a bivariate extreme-value

copula. Similarly to the results on the RD data set, the demand of heat from residential

buildings is less sensitive than that from residential and non-residential buildings (TD

data set). On the other hand, given a certain value for the heat demand, the conditional

probability of having a pick given a certain temperature decreases very slowly by varying

the value of the temperature and it is lower than that finding for the RD data set. This

means that the consumption of hot water does not have an important impact on the shape

of the dependence structure between OT and PHD.

5 Conclusion and discussion

We analysed the peak district heating demand and its complex relationship with the

climatic situation of the Italian city Bozen-Bolzano. The final aim was providing the

conditional probability of a pick heat demand given a certain extreme weather condition.

The proposed approach is based on the copula theory that makes it possible to keep into

consideration and model complex and nonlinear dependencies. Through several tools, e.g.

the quantile dependence and the goodness-of-fit copula test, we selected the best copula

model for three analysed data sets: one concerning the peak district heating demand of

both residential and non-residential buildings, the second one concerns only the residential

buildings and the last one concerns the demand of heat without hot water of residential

buildings. A symmetric copula model has been selected for all the three cases but with

slight differences in the shape and the strength of the dependence relationship since in

all the three cases the dependence is mild, with a Kendall’s τ̂ < 0.5. Next, the copula-

based conditional dependence of the heat demand given the outdoor temperature has been

studied and, in general, we found that the district heat demand is strongly related to the

outdoor temperature and the probability of a peak demand shows an exponential-type

increase conditionally to a linear decrease of the temperature.

Our findings have interesting and useful implications in the energy production and

market. The knowledge of the probability distribution of the heat demand conditionally

to the weather can help to, first of all, improve the production schedule of thermal energy

and the management of the thermal energy storage, from the integration with other energy

sources to the capacity of the storages. Secondly, if renewable sources have being in use,
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then the conditional distribution of the demand could help in coping with their fluctuating

and intermittent nature. Hence, extreme situations of heat demand could be managed in

a more efficient way. Moreover, the probability distribution of peak heat demand could

play a role in the optimization of the modeling of district load forecasting to guarantee

the best design and operation of distributed energy system. Finally, the energy market as

well as energy prices can benefit in terms of stability from a statistical method sensitive

to extreme situations.

Our approach can be enhanced in a multivariate copula-based approach by including

other factors. On the one hand, the total daily energy demand could be useful to improve

the design and the management of the energy storage. On the other hand, further climatic

factors, like solar radiation and wind speed, could be useful to provide a more complete

description of the weather is given as input to the copula-based conditional probability

function. Also, the apparent temperature, which can be computed by exploiting the

information about the outdoor temperature, the humidity and the wind speed, could be

used as a synthetic description of the weather.

The analysis of the percentiles of peak heat demand showed that the proposed ap-

proach can be a potential powerful tool for improving the management of thermal energy

and its storage.
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Miss Laiha Mat Kiah, Jawed Akhtar Unar, Ljiljana Živković, and Miomir Raos.
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[45] A. Sklar. Fonctions de répartition à n dimensions et leures marges. Publications de

l’Institut de Statistique de L’Université de Paris, 8:229–231, 1959.
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