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Abstract

In this paper we propose a Partial–MLE for a general spatial nonlinear probit model, i.e. SARAR(1,1)–

probit, defined through a SARAR(1,1) latent linear model. This model encompasses the SAE(1)–probit model,

considered by Wang et al. (2013), and the more interesting SAR(1)–probit model. We perform a complete

asymptotic analysis, and account for the possible finite sum approximation of the covariance matrix (Quasi–

MLE) to speed the computation. Moreover, we address the issue of the choice of the groups (couples, in our

case) by proposing an algorithm based on a minimum KL-divergence problem. Finally, we provide appropriate

definitions of marginal effects for this setting. Finite sample properties of the estimator are studied through

a simulation exercise and a real data application. In our simulations, we also consider both sparse and dense

matrices for the specification of the true spatial models, and cases of model misspecifications due to different

assumed weighting matrices.

Keywords: Spatial autoregressive–regressive probit model, Nonlinear modeling, SARAR, Partial Maximum

Likelihood, Quasi Maximum Likelihood, Marginal effects.

JEL codes: C13,C31,C35,C51.

1. Introduction

Estimation theory and inference for econometric models which deal with spatially–distributed data differ

substantially from the usual techniques used in standard statistics/econometrics, see Whittle (1954), Besag

(1972), Besag (1974), Ord (1975), Cliff and Ord (1981). In spatial econometrics (Anselin, 1988), a large

number of theoretical papers face instead the added difficulties in deriving the asymptotic properties of a series

of extremum estimators, i.e. GMM, Quasi–MLE, etc., see Kelejian and Prucha (1998), Lee (2003), Lee (2004),

Kelejian and Prucha (2010). The bi–directionality nature of spatial dependence, leading to a simultaneous

specification rather than the conditional specification of spatial autoregressive models (Sain and Cressie, 2007)
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is an example. Anyway, being spatial dependence simply a special case of cross–sectional dependence (Conley,

1999), the way by which spatial econometric models are typically specified and parametrized is convenient

as long as we are able to exploit the information gathered not only about the observed values but also on

the locations of the endogenous random variables. For instance, the uniform boundedness assumption of

the weighting matrices is simply a way to shrink some parameters of the variance–covariance matrix to zero

especially if a sparse matrix is assumed to be the true one generating the underlying spatial process.

Probabilistic choice theory and Random Utility Models (RUM) have a long history in economics, see

Manski (1981), with in particular the important Nobel contribution by McFadden (2001). Modeling spatial

discrete choice (and limited dependent) variables is becoming a challenging work in economics, see Wang et al.

(2013), Qu and Lee (2013), Qu and Lee (2012), Lambert et al. (2010), Smirnov (2010). Nonlinear models,

like probit/logit models, are useful to analyse endogenous dichotomous dependent variables, but the specified

functional form is nonlinear in parameters and their estimation requires iterative optimization procedures.

Differently from the linear case, spatial dependence adds a further complexity in the estimation of parameters

of spatial discrete choice (SDC) models.

From a computational point of view, direct optimization procedures require maximum simulated likelihood

(MSL) estimators (Beron et al., 2003) which are time-consuming in large data sets because of the implied

computational burden in evaluating an n–dimensional integral, see Fleming (2004). The optimization of the

objective function requires repeated calculations of the inverses of n–dimensional matrices, i.e. (In − ρWn)
−1

,

which also preclude an easy extension to panel data applications, whose diffusion is experiencing a massive

increase, see e.g. Smith and LeSage (2004), Lee and Yu (2010), Kapoor et al. (2007), Lee and Yu (2016),

Baltagi et al. (2017). Approximate and conditional maximum likelihood estimators,in the works by Pace and

LeSage (2011), Mozharovskyi and Vogler (2016), Martinetti and Geniaux (2017), are one way to cope with this

problem.

Another issue is that the unknown form of spatial dependence produces inconsistent structural estimates in a

discrete–choice framework, see e.g. McMillen (1995) and Breslaw (2002). Indeed, the parametrization of spatial

autoregressive models with a finite unknown number of parameters (i.e. the autocorrelated coefficients) implies

at least (spatial) heteroskedasticity which in turn leads to inconsistency of the standard probit estimator due

to misspecification of the functional form (i.e. Bernoulli distributions). First attempts to deal with the implied

heteroskedasticity are the contributions by Case (1992) and McMillen (1992). Within a generalized method of

moments (GMM) framework we recognise the works by Pinkse and Slade (1998), Klier and McMillen (2008),

where the latter, in particular, proposed a Linearized GMM estimator which is feasible even with moderate to

large sample sizes but it is reasonable as long as the autocorrelated coefficient is relatively small.

Composite MLEs have been proved to be computationally efficient and statistically consistent, see Heagerty

and Lele (1998), Gao and Song (2010), Bhat (2011), Bai et al. (2014). In spatial econometrics, Wang

et al. (2013) have recently proposed a Partial–MLE (a particular Quasi–MLE) for a spatial (first–order)
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autoregressive probit error (SAE(1)–probit) model by dividing observations into many small groups (i.e.,

couples of spatially–distributed random variables) in which adjacent observations belonged to a single group,

and bivariate normal distributions were specified within each group (in the linear case see the work by Arbia

(2014)). As Ibragimov and Müller (2010) stressed, some a priori knowledge about the correlation structure is

required to make a reasonable partition (i.e. clustering) of the data in a finite number of groups. However,

statistically speaking, the optimal choice of groups is not known a priori. Moreover, a spatial (first–order)

autoregressive probit (SAR(1)–probit) model, i.e. with lagged dependent variables, is generally recognized to

be a more interesting spatial model specification in which the autocorrelation coefficient enters in both the

mean and the covariance structure when considering the implied reduced form model. For instance, in empirical

applications within social networks/interactions a SAR(1)–probit is often more interesting, because a direct

information on interactions among economic agents’ choices is measurable.

In this paper we propose a Partial–MLE specifically based on bivariate joint distributions to deal with

spatial dependences within groups (couples in our case) of random variables for a SAR(1)–probit model and

for its extension to the more general spatial (first–order) autoregressive-regressive probit model with (first–

order) autoregressive disturbances (SARAR(1,1)–probit). For very large data sets we consider a truncated

series as a reasonable approximation of (In − ρWn)
−1

as in Kelejian et al. (2004), which defines our Quasi–

MLE (asymptotically equivalent to the Partial–MLE). We perform its finite sample properties and derive the

increasing domain asymptotic results. A Kullback–Leibler divergence approach is used to choose couples by

controlling for the loss of statistical information. We also propose proper definitions of the marginal effects,

discussed through Monte Carlo simulations. In our simulations, we consider both sparse and dense matrices

for the specification of the true spatial models. Robustness checks on model misspecification of the weighting

matrices Wn are also included. All these figures make our work substantially different from that proposed by

Wang et al. (2013).

The rest of the paper is organized as follow. Section 2 specifies a general spatial probit model, i.e.

a spatial (first–order) autoregressive-regressive probit model with (first–order) autoregressive disturbances

(SARAR(1,1)–probit) and explains the related problem of inconsistency due to unobserved spatially

autocorrelated shocks. Section 3 describes our Partial and Quasi–maximum likelihood estimator (PMLE and

QMLE) based on bivariate distributions. In Section 4 we propose an algorithm for the choice of couples based

on a minimum expected information loss. Section 5 reports the asymptotic results based on the increasing

domain assumption. Section 6 defines the marginal effects. Section 7 evaluates the finite sample properties

of our QMLE with respect to both the parameters and the marginal impacts. Section 8 proposes to replicate

the empirical application of business recovery in the aftermath of Hurricane Katrina by LeSage et al. (2011).

Finally, Section 9 concludes.
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2. Model specification

Let yn be a n–dimensional stochastic vector of spatial binary variables located on a possibly unevenly spaced

lattice Z ⊆ <n. A spatial (first–order) autoregressive–regressive probit model with (first–order) autoregressive

disturbances (SARAR(1,1)–probit) is defined as

y∗n = ρWny∗n + Xnβ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε)

yn = In (y∗n > 0n) (1)

where y∗n is the n–dimensional vector of latent continuous dependent variables, yn is the n–dimensional

vector of observed binary dependent variables defined by the n−dimensional indicator function In (y∗ > 0) =

(I(y∗1 > 0), . . . , I(y∗n > 0))
′
, Xn is the n by k matrix of exogenous variables including a constant term, Wn and

Mn are n–dimensional spatial weighting matrices of known constants, θ =
(
β′, ρ, λ

)′
is a (k + 2)–dimensional

parameter vector with autoregressive coefficients ρ and λ, and εn is a multivariate normal vector of innovations

with zero mean and finite variance σ2
ε < ∞, such that Σε = σ2

εIn. Latent variables are then assumed to be

linear functions of the regressors, but they are observed through the use of a binary variable that makes the

overall model nonlinear in parameters. In the nonlinear case, σ2
ε is usually set to 1 for identification. Additional

conditions are needed for the identification of (ρ, λ) in a SARAR(1,1)–probit model. Specifically, Mn and Wn

are assumed to be different thus allowing for different mechanisms to govern spatial correlation between shocks

affecting the latent model and spatial dependence of the latent variables themselves. Then, the entire spatial

dependence can be easily disentangled. It is notable that, when Wn = Mn, then distinguishing among the two

spatial effects may be difficult, with possible identification problems of the autoregressive parameters. In this

particular case, sufficient conditions to ensure identifiability of the linear model is that the covariates make a

material contribution towards explaining variation in the dependent variable.

The inclusion of spatially-lagged dependent variables Wny∗n typically causes an endogeneity problem, which

in turn produces inconsistency of least squares estimators. This problem is referred to the bi-directionality

nature of spatial dependence in which each site, say i, is a second-order neighbor of itself, implying that spatial

spillover effects have the important meaning of feedback/indirect effects also on the site where the shock may

have had origin. The problem also makes the overall model a system of n simultaneous equations (one for each

random variable in space), with the consequence that spatial autoregressive models cannot be viewed as simple

extensions of natural recursive time–series econometric models (see Hamilton (1994)). These type of spatial

models are then multivariate by definition, with the peculiarity of having statistical information coming from

one observation for each random variable in space in a cross–sectional framework.

In order to ensure stable spatial processes we have to introduce some assumptions in line with Kelejian and

Prucha (2010). Let us first recall the following result
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Lemma 2.1. Let τ denote the spectral radius of the square n–dimensional Wn (resp. Mn) matrix, i.e.:

τ = max{|ω1|, ..., |ωn|}, where ω1, ..., ωn are the eigenvalues of Wn (resp. Mn). Then, (In − ρWn)
−1(

resp. (In − λMn)
−1
)

is non singular for all values of ρ (resp. λ) in the interval (−1/τ , 1/τ).

Assumption 1. (a) All diagonal elements of Wn and Mn are zero. (b) ρ ∈ (−1/τ , 1/τ) and λ ∈ (−1/τ , 1/τ).

Assumption 1(a) means that each spatial unit is not viewed as its own neighbor, whereas Assumption 1(b)

ensures that the model in (1) can be uniquely defined by Lemma 2.1. Then, if we interpret model in (1) as

an equilibrium relationship, this choice of the parameter space rules out unstable Nash equilibria. Note that,

if all the eigenvalues of Wn (resp. Mn) are real, which is the case for symmetric weighting matrices, and

(ω < 0, ω > 0), where ω = min{ω1, ..., ωn} and ω = max{ω1, ..., ωn}, we are in the particular case in which ρ

(resp. λ) lies in the interval (1/ω, 1/ω) (see Kelejian and Prucha (2010), note 6).

Assumption 2. Matrices Wn and Mn and (I− ρWn)
−1

and (I− λMn)
−1

are uniformly bounded in both

row and column sum norms.

Assumption 3. Elements of Xn are uniformly bounded constants, Xn has full column rank, and

limn→∞ (X′nXn) /n exists and is nonsingular.

Assumption 2, is equivalent to Assumption 5 in Lee (2004) and it ensures that the following infinite series

expansions are well defined

A−1
ρ = (In − ρWn)

−1
= In + ρWn + ρ2W2

n + · · ·+ ρqWq
n + . . .

B−1
λ = (In − λMn)

−1
= In + λMn + λ2M2

n + · · ·+ λqMq
n + . . . . (2)

It amounts at having rows and columns of both Wn and Mn before normalization uniformly bounded

in absolute value as n goes to infinity, ensuring that the correlation between two spatial units should

converge to zero as the distance separating them increases to infinity. General normalization rules exist. A

spectral–normalization rule is generally recommended to guarantee the equivalence between the original spatial

structural model and the model obtained from normalizing the Wn and Mn weighting matrices (see Kelejian

and Prucha (2010)). However, we should note that the resulting spatial interaction coefficient corresponding

to the normalized weights matrix will in general depend on the sample size because the normalizing factor (e.g.

the spectral radius of Wn or Mn) depends on it as well.

The use of spectral–normalisation may raise some concerns related to Assumption 2: while Assumption

1 and Lemma 2.1 guarantee that both (In − ρWn) and (In − λMn) are bounded in row and column sum, it

is not completely clear what is the effect of spectral–normalization on Wn and Mn. In fact, if the spectral

radius τ̄n decreases with n, the normalised matrices Wn (or Mn) would have bounded entries, but could be

unbounded in row or column sum. A deep investigation over the conditions that a weight matrix has to fulfil

in order that the spectral–normalised matrix satisfies Assumption 2 is beyond the scope of this work and will
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be a subject of further research.

Besides the spectral–normalization that we only consider for dense weight matrices, in this paper we use

the typical row–normalization (i.e. Wn, or Mn, is a row–stochastic matrix) of the weighting matrices, so that∑
j wij = 1 (resp.

∑
jmij = 1), which still have the appealing interpretation of considering spatial effects as a

weighted average of neighboring spatial random variables. The resulting weighting matrices are used to define

the data generating processes (DGPs), that will change according to the type of criterion and distance used.

More details on the definition of the weight matrices are given in Section 7.

Due to the simultaneous nature of spatial autoregressive processes, spatial models are typically specified

in reduced forms. Under the above regularity conditions and assumptions, the structural model in (1) can be

written in reduced form as

y∗n = A−1
ρ Xnβ + A−1

ρ un = A−1
ρ Xnβ + A−1

ρ B−1
λ εn = A−1

ρ Xnβ + νn, νn ∼ Nn (0n,Σν)

yn = In (y∗n > 0n) (3)

where νn = A−1
ρ B−1

λ εn and Σν := Σν(ρ,λ) = E [νnν
′
n] = σ2

εA
−1
ρ B−1

λ B−1
λ

′
A−1
ρ
′

with σ2
ε = 1 for identification.

From the reduced form in equation (3), we finally obtain expected value and variance–covariance matrix, for

all i = 1, . . . , n:

E [yi | Xn] = P {yi = 1 | Xn] = P
{
i–th term of νn > i−th term of

{
A−1
ρ Xnβ

}
| Xn

}
= Φ

(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
)
.

(4)

The robust (to heteroskedasticity) variance–covariance matrix is obtained from

VC [yi | Xn] = Φ
(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
) [

1− Φ
(
{Σν(ρ,λ)}

−1/2
ii {A−1

ρ Xnβ}i
)]
. (5)

where {·}ii is the i−th diagonal component of the matrix in brackets.

2.1. Nested–model specifications

Two widely used sub–models can be specified starting from equation (1): (a) spatial (first–order)

autoregressive probit (SAR(1)–probit) model by letting λ = 0; (b) spatial (first–order) autoregressive error

probit (SAE(1)–probit) model by letting ρ = 0.

(a)

y∗n = ρWny∗n + Xnβ + εn, εn ∼ Nn (0n,Σε) , yn = In (y∗n > 0n) (6)

(b)

y∗n = Xnβ + un, un = λMnun + εn, εn ∼ Nn (0n,Σε) , yn = In (y∗n > 0n) (7)

The former is generally considered more interesting for several reasons. From a statistical point of view, the

autocorrelation coefficient ρ summarizes the information of a “direct” dependence/interaction structure among
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the random variables of interest, whereas λ captures the intensity of the dependence structure implied by the

disturbances/shocks, so that they “indirectly” have an impact on the dependent variables. Moreover, for linear

specifications, ρ enters in both the mean and the variance–covariance structure of the model, whereas λ enters

only in the variance–covariance structure. For example, in network economics literature, the main goal is to

measure the direct interactions among economic/social agent choices, and a SAR(1)–probit model is usually

preferred. However, a SAE(1)–probit model is at least interesting to possibly avoid the inconsistecy problem1

(see subsection 2.2) which does not arise in the spatial linear case for the same model specification2.

In this paper we develop the theory of a type of Partial–MLE for a SARAR(1,1)–probit model with a

particular emphasis on the SAR(1)–probit case (see Section 3). We also study the properties of a Quasi–MLE,

deriving from a finite order approximation of the spatial covariance structure entering the partial loglikelihood

function.

2.2. The problem of inconsistency

The error term in a simple probit model summarizes the unknown information coming from other

regressors (i.e. omitted variables) which we assume to be uncorrelated with those in Xn. In this case,

extremum estimators, such as likelihood based estimators, are consistent, see Amemiya (1977), Amemiya

(1978) and Amemiya (1985). However, unknown forms of misspecification of the functional form (Yatchew

and Griliches, 1985), for example when heteroskedastic errors are incorrectly assumed to be homoskedastic,

lead to inconsistency of the maximum likelihood estimators in a nonlinear setting (Poirier and Ruud, 1988).

Indeed, MLE is consistent if the conditional density of yn|Xn is correctly specified. Misspecification of the

functional form in a probit context is equivalent to have a misspecification of the Bernoulli probability for each

yi, 1 ≤ i ≤ n.

In a SAE(1)–probit setting, heteroskedasticity will arise whenever the weights Mn induce non–constant

diagonal terms of the matrix Σu = [B′λBλ]
−1

. Indeed, this usually happens even for rather simple choices

of Mn, such as a k-nearest neighbor matrix. Heteroskedastic probit estimators (Case, 1992) that explicitly

consider the diagonal elements of the variance-covariance matrix, i.e. diag (Σu) = diag [B′λBλ]
−1

, remain

consistent. However, the form of heteroskedasticity is generally unknown if it is implied by the spatial

autocorrelation coefficient, see McMillen (1995) and Pinkse and Slade (1998).

1Note that if the true model includes spatial effects in the endogenous variables y∗n, the SAE(1)–probit model still produces

inconsistent estimates. For nonparametric estimation and general specifications of spatial error processes see Kelejian and Prucha

(2007), Kelejian (2016).
2Apart from information that comes from economic theory, a SAE(1) model produces only more efficient estimates in the linear

case.
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In the general case, let Aρ = (In − ρWn) and Bλ = (In − λMn). So we get

y∗n = ρWny∗n + Xnβ + un, Bλun = εn

Bλy
∗
n = ρBλWny∗n + BλXnβ + εn

y∗n = λMny∗n + ρBλWny∗n + BλXnβ + εn, εn ∼ Nn (0n,Σε) (8)

which is known as the Cochrane–Orcutt type transformation (Cochrane and Orcutt, 1949), a model in which

the resulting disturbances are innovations. Even after the Cochrane–Orcutt transformation, both Wny∗n and

Mny∗n are correlated with εn because

E [y∗nε
′
n] = A−1

ρ E [unε
′
n] = A−1

ρ B−1
λ (9)

and these correlations rule out the use of nonlinear least squares methods due to their inconsistency. For the

SARAR(1,1)–probit model in equation (1), and its sub–specification SAR(1)–probit by letting λ = 0, we have

E ((Wny∗n) u′n) 6= 0n where un = B−1
λ εn and E ((Wny∗n) ε′n) 6= 0n, respectively, see Kelejian and Prucha

(1998) and Kelejian and Prucha (1999) in the linear case. Therefore, consistency can only be achieved by

correctly specifying the conditional expected value of model in equation (1)

3. Partial–ML estimation

The main problem with estimating model (1) – or its sub–specifications – via MLE is the need of numerical

approximation of n–dimensional integrals, which are time–consuming even with moderate sample sizes. In

spatial linear autoregressive models, GMM approach is preferred to MLE due to computational tractability.

However, current GMM approaches for spatial nonlinear models are either computationally intractable (Pinkse

and Slade, 1998) or based on a linear approximation (Klier and McMillen, 2008) which is not feasible for higher

autocorrelation coefficients. In this section we propose a computationally feasible estimation procedure for the

SARAR(1,1)–probit model. Our estimator is based on the principle of a Partial–MLE. In order to reduce the

burden of inverting Aρ and Bλ, we also consider an asymptotically equivalent estimator, based on a finite

order approximation (we refer to the Quasi–MLE estimator in this case). We give details on the definition of

the estimator in Sections 3.1–3.2. Throughout this Section, all indexes n in vectors and matrices are omitted,

to ease the notation.

3.1. SARAR(1,1)–probit model

We start by considering the SAR(1)–probit model specified in equation (6), and extend later the results

to the SARAR(1,1)–probit model in equation (1). Similarly to Wang et al. (2013), we define a Partial–MLE,

thus avoiding the problem of n–dimensional integration induced by these models. As already pointed out in

Section 2, the major difference relative to the model considered in Wang et al. (2013) consists in the fact that
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both the mean and the variance of the bivariate distribution of the latent variables depend on the parameter

ρ, through the matrix A−1
ρ = (I− ρW)

−1
. Thus, the probabilities Pr (yg1 = d1, yg2 = d2 | X), for every couple

g ≡ {g1, g2} and d1, d2 ∈ {0, 1}2, depend in a much more complex way on the weight matrix and on the

parameter.

Although we explicitly refer to partial loglikelihood based on bivariate marginals, most of the results3 of this

Section and Section 5 can be straightforwardly adapted to an r−dimensional partial distribution, with r > 2.

Throughout this Section, we are assuming that the couples g = 1, . . . , G are given (for example, g1 = 2g−1,

g2 = 2g). We will discuss in more details criteria for the choice of couples in Section 4. Now, consider groups

(couples) indexed by g = 1, . . . , G. From model in equation (6), for the units (g1, g2) of a generic group g we

have: yg1 = I{y∗g1 > 0} and yg2 = I{y∗g2 > 0} , where

y∗g1 = {A−1
ρ Xβ}g1 + ug1

y∗g2 = {A−1
ρ Xβ}g2 + ug2

and where u = A−1
ρ ε ∼ N

(
0,Σu(ρ)

)
.

In the following, we write the shortened form Σ for Σu(ρ), leaving the dependence on u (and ρ) implicit in

the formula. Moreover, we denote by Σg the 2 × 2 block corresponding to the variance covariance matrix of

ug:

Σg =

 σ2
g1 σg1,g2

σg1,g2 σ2
g2

 .

Further, we write Xρ = A−1
ρ X. Now, we can use arguments similar to those in Wang et al. (2013) to find, for

all d1, d2 ∈ {0, 1}2, the probabilities:

pg(d1, d2) = P (yg1 = d1, yg2 = d2 | X) = P (yg1 = d1 | X)P (yg2 = d2 | yg1 = d1,X) .

For any g = 1, . . . , G, let us define the functions (implicit in ρ and β)

ϕ1,g(u) =
xρ,g1β + u

σg1,g2
σ2
g2√

σ2
g1 − σ2

g1,g2/σ
2
g2

and ϕ2,g(u) =
xρ,g2β + u

σg1,g2
σ2
g1√

σ2
g2 − σ2

g1,g2/σ
2
g1

, (10)

and sgi = 2(di − 1/2).

Theorem 3.1. The joint probabilities pg(d1, d2) are given by:

pg (d1, d2) =

∫
{sg1u>−sg1xρ,g1β}

1

σg1
φ

(
u

σg1

)
Φ (sg2ϕ2,g(u)) du

= Pr {sg1Z1 > sg1xρ,g1β, sg2Z2 > sg2xρ,g2β}
(11)

3The algorithm presented in Section 4 and the computation of the score vector given in Appendix E are instead specific to

couples.
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where Z = (Z1, Z2) ∼ N (0,Σg)
4.

The proof of Theorem 3.1 is given in Appendix C. Using Theorem 3.1, we can write the partial loglikelihood

function of the spatial probit model as

`n (θ; y,X) =
1

G

G∑
g=1

[yg1yg2 log (pg (1, 1)) + yg1 (1− yg2) log (pg (1, 0))

+ (1− yg1) yg2 log (pg (0, 1)) + (1− yg1) (1− yg2) log (pg (0, 0))]

. (12)

The loglikelihood for estimating a SARAR(1,1)–probit model is also given by equation (12) with probabilities

defined in equation (11). The difference in the formula is given by the elements of the matrix Σg, which now

depends on both ρ and λ:

Σ := Σν(ρ,λ) = A−1
ρ B−1

λ B−1
λ

′
A−1
ρ
′
.

The score vector ∇ (θ; y,X) =
(
∇β (θ)

′
,∇ρ (θ)

)′
is equal to

∇β (θ) =
1

G

∑
g

∇gβ (θ) , ∇ρ (θ) =
1

G

∑
g

∇gρ (θ)

where

∇gβ (θ) = yg1yg2
∂pg (1, 1) /∂β

pg (1, 1)
+ yg1 (1− yg2)

∂pg (1, 0) /∂β

pg (1, 0)
+ (1− yg1) yg2

∂pg (0, 1) /∂β

pg (0, 1)

+ (1− yg1) (1− yg2)
∂pg (0, 0) /∂β

pg (0, 0)

∇gρ (θ) = yg1yg2
∂pg (1, 1) /∂ρ

pg (1, 1)
+ yg1 (1− yg2)

∂pg (1, 0) /∂ρ

pg (1, 0)
+ (1− yg1) yg2

∂pg (0, 1) /∂ρ

pg (0, 1)

+ (1− yg1) (1− yg2)
∂pg (0, 0) /∂ρ

pg (0, 0)

(13)

and where formulas for ∂pg (d1, d2) /∂β and ∂pg (d1, d2) /∂ρ are given in Appendix E. The score vector of a

SARAR(1,1)–probit model is simply ∇ (θ; y,X) =
(
∇β (θ)

′
,∇ρ (θ) ,∇λ (θ)

)′
with

∇β (θ) =
1

G

∑
g

∇gβ (θ) , ∇ρ (θ) =
1

G

∑
g

∇gρ (θ) , ∇λ (θ) =
1

G

∑
g

∇gλ (θ)

where all ∇g. (θ) follow from (13). The terms
pg(d1,d2)

∂β
,
pg(d1,d2)

∂ρ and
pg(d1,d2)

∂λ are given in Appendix E.2.

To introduce our QML estimator, we note that (11), (12) and (13) are the exact formulas for the bivariate

probabilities and partial loglikelihood of model (6) or (1) as well as for the score vector. In practice, however,

they all depend on implicit functions of the matrix A−1
ρ (and B−1

λ ) through both Xρ and the elements σg1 , σg2

and σg1,g2 . A possible way to avoid the inversion of Aρ (and Bλ), when n is large, is through the approximation

4Note that in (11) the role of g1 and g2 may be inverted, thus, for example pg(1, 1) may be equivalently written as:

pg (1, 1) =

∫ ∞
−xρ,g2β

1

σg2
φ

(
u

σg2

)
Φ (ϕ1,g(u)) du.

10



of A−1
ρ by a finite sum: Ãρ =

∑q
k=0 ρ

kWk, q <∞. We denote the corresponding function based on equation

(12) as the quasi loglikelihood, ˜̀(θ; y,X) and its optimal vector θ̃ the Quasi–MLE. Details on the finite order

approximation are given in Appendix D and Appendix E. The use of finite sum approximation for the inverses

of either Aρ and Bλ is not new in the literature and indeed some authors suggest it as a good practise to reduce

the time of computation, see for instance Martinetti and Geniaux (2017). Despite this, no great attention has

been given to its asymptotic behavior, relatively to the cross–sectional sample size n. Intuitively, if the number

of terms q of the finite order approximation is large enough, the difference between the Partial–MLE and the

Quasi–MLE is negligible. Asymptotically, this accounts to assuming q to increase with n at the proper rate.

Conditions on this rate are given in Section 5, where we study the asymptotic behavior of both the Partial–MLE

and Quasi–MLE.

3.2. Computational aspects

The computational optimization procedure is based on unconstrained minimization of the negative log–

likelihood function with respect to the vector of parameters as in Catania and Billé (2017). So let h : <k+2 → Ω

be a measurable vector valued mapping function such that h ∈ C2 and h

(
◦
θ

)
= θ, where

◦
θ=

(
◦
β
′
,
◦
ρ,
◦
λ

)′
is the

unconstrained vector of parameters defined in <k+2. Given the necessary conditions on the parameter spaces

for ρ and λ, we define the following mapping functions

h

(
◦
θ

)
:



ρ = ω−1
ρ +

ω−1
ρ −ω

−1
ρ

1+exp

(
−
◦
ρ

) ,
λ = ω−1

λ +
ω−1
λ −ω

−1
λ

1+exp

(
−
◦
λ

) ,
β = hβ

(
◦
β

)
, for j = 1, . . . , n

(14)

where
(
ωρ, ωρ

)
and (ωλ, ωλ) are the minimum and maximum eigenvalues of the weighting matrices W and M,

respectively. To obtain working parameters
◦
θ from initial starting values of the natural parameters θ, inverse

functions h−1 (θ) are used. In the same way, let ∇ (θ; y,X) be the score vector of a specified log–likelihood

function. By exploiting the chain rule we can define

◦
∇
(
◦
θ; y,X

)
= J

(
◦
θ; y,X

)′
∇ (θ; y,X) (15)

where J
(
◦
θ; y,X

)
=

(
J
(
◦
β

)′
,J
(◦
ρ
)
,J
(◦
λ
))′

is the Jacobian matrix with respect to the

working/unconstrained parameters, and it is equal to

11



J
(
◦
θ

)
:



J
(◦
ρ
)

=
(ω−1
ρ −ω

−1
ρ ) exp

(
−
◦
ρ

)
(

1+exp

(
−
◦
ρ

))2 ,

J
(◦
λ
)

=
(ω−1
λ −ω

−1
λ ) exp

(
−
◦
λ

)
(

1+exp

(
−
◦
λ

))2 ,

J
(
◦
β

)
= J (β) , for j = 1, . . . , n.

(16)

4. The choice of couples of the spatial data

The choice of theG couples to be considered in the computation of the Partial–ML estimation is a potentially

critical part of the procedure. In fact, the definition of the Partial-MLE (as well as of its quasi counterpart)

only exploits the limited information of the two dimensional distribution of the latent variables. Different

associations of couples can in principle determine relevant differences in terms of information loss. The aim of

this Section is to propose an algorithm for the choice of G couples for which the expected information loss is

the lowest possible.

One way to minimize the loss of information, is to consider the partial loglikelihood functions corresponding

to different pair choices, in order to subsequently obtain a single estimation by an efficient minimum distance

procedure as suggested by Wang et al. (2013) in a similar framework. Since the number of possible ways

to choose couples from n = 2G units corresponding to different partial loglikelihood functions is huge5, the

number of partitions that can be considered is necessarily very small compared to it, thus the question of

ranking the best partitions is extremely important.

A particular choice of G couples from n = 2G units can be obtained with two dual procedures:

either we keep the order of units fixed and pick without replacement two units at a time, thus obtaining

(ig,1, ig,2), g = 1, . . . , G, or we pick consecutive couples (2g − 1, 2g) from different permutations of the units.

According to the latter approach, finding the best selection of couples amounts at finding the best permutation

of units (i1, . . . , in) relatively to a specified optimality criterion. In line with this, it is convenient to introduce

the following notation. Let π : π(1, . . . , n) = (i1, . . . , in) be a permutation map. Each π defines a unique set of

couples by

{(π(1), π(2)), . . . , (π(2g − 1)π(2g)), . . . , (π(2G− 1), π(2G))} = {(i1, i2), . . . , (i2G−1, i2G)}.

We further denote by Pπ the permutation matrix corresponding to π, namely

Pπ = (eπ(1), . . . , eπ(n))
′,

5Specifically, it is (2G−1)!! = (2G)!/G!2G, because partial loglikelihood is invariant under permutations of couples and changes

of the order of units within each pair.
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where ej is the j−th canonical column vector. Thus, Pπ transforms a vector z = (z1, . . . , zn)′ into

Pπz = (zπ(1), . . . , zπ(n))
′. With this notation, the reduced model in equation (3) can be rewritten as

Pπy∗ = PπA−1
ρ Xβ + Pπν, ν ∼ Nn (0n,Σ)

Pπy = In (Pπy∗ > 0n) (17)

Note that from the assumptions of the model in equation (1) defined in Section 2, we obtain Pπν ∼

N (0,PπΣP′π), where P′π = Pπ−1 = P−1
π and we use the short notation Σ for the SARAR(1,1)–probit

covariance matrix. Finally, we will use the notation Σπ for the diagonal block matrix with diagonal blocks of

size 2× 2 of PπΣP′π
6.

We propose a criterion that gives us a (not necessarily unique) permutation map π∗ solving a minimum

KL–divergence problem. In order to explain the procedure, let us denote by Pθ the probability distributions

of the n−tuple (y1, . . . , yn) (conditional on X), from model in equation (1). Using the notation introduced in

Theorem 3.1, we get

Pθ(d) = Pr (y1 = d1, . . . , yn = dn) = Pr (s1Z1 > s1xρ,1β, . . . , snZn > snxρ,nβ) .

Similarly, let Pπθ = pπ1,θ × pπ2,θ × · · · × pπG,θ, where each pπg,θ, consistently with equation (11), is equal to

Pr
{
sπ(2g−1)Z1 > sπ(2g−1)xρ,π(2g−1)β, sπ(2g)Z2 > sπ(2g)xρ,π(2g)β

}
.

In particular, we denote by P0 and Pπ0 the probability distributions corresponding to θ = θ0. Our idea is to

find a permutation that minimizes the KL divergence between Pπ0 and the true probability distribution P0 of

the whole vector Pπy, namely that minimizes:

KL(Pπ0 ‖P0) =
∑

d∈{0,1}n
Pπ0 (d) log

Pπ0 (d)

P0(d)
, (18)

over all possible permutations π.

Since the computation of the term Pr(y = d | X) = P0(d) involves a n−dimensional integration, we

propose to minimize the KL–divergence between the continuous Gaussian distributions of the latent variables

that generate Pπ0 and P0, which we denote by fπ0 (n−variate Gaussian density with pairwise independent

components) and f0 (the full n−variate Gaussian density from model (1)), respectively. Let Pn be the set of

all permutations of n units corresponding to distinct bivariate distributions. Our algorithm is based on the

following result:

6The matrix Σπ can be written compactly as

Σπ =

G∑
g=1

EgPπΣP′πEg ,

where Eg is the n× n matrix with all zero row vectors, except for rows 2g − 1, 2g, that are equal to e′2g−1 and e′2g respectively.
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Theorem 4.1. (i) For every π ∈ Pn and θ ∈ Θ,

KL(Pπθ ||Pθ) ≤ KL(fπθ ||fθ). (19)

(ii) For any θ = (β, ρ, λ) ∈ Θ, under model (1):

arg min
π
KL(fπθ ||fθ) = arg min

π∈P

G∑
g=1

(b(π(2g − 1), π(2g))− log(σ̄(π(2g − 1), π(2g))) (20)

where b(i, j) = σ∗(i, j)σ(j, i) + σ∗(j, i)σ(j, i), σ̄(i, j) = σ(i, i)σ(j, j)− σ(i, j)σ(j, i), σ(i, j) is the (i, j)−th

component of Σ and σ∗(i, j) is the (i, j)−th component of Σ−1.

Theorem 4.1 suggests the following procedure based on the solution of a maximum weighted matching

problem in a general graph:

Step 1. Start from a guess for the value of (ρ, λ) (only ρ or λ in the case of a SAR(1) or SAE(1)–probit model):

(ρ̃, λ̃) and compute Σ̃ from it

Step 2. For all couples (i, j), i, j = 1, . . . , n, compute b(i, j), σ̄(i, j) and u(i, j) = b(i, j)− log(σ̄(i, j)), using Σ̃

Step 3. Build a complete weighted graph G, with n nodes and weights equal to −u(i, j) for edge {i, j}

Stap 4. Use Edmonds’ blossom algorithm (see Galil (1986) and references therein) for the computation of the

maximum weighted matching7

The procedure introduced in this section is a way for controlling the information loss, which tends to be

higher: (i) when the weight matrix is dense; (ii) for large values of ρ (in absolute value). For this reason, we

expect the use of the algorithm to improve the estimation in one of those two cases.

5. Asymptotics

In this section we study the asymptotic properties of the QML/PML estimators of the SARAR(1,1)–probit

model. The asymptotic analysis performed here enters in the context of the increasing domain asymptotics,

consistently with the literature. In order to prove consistency and asymptotic normality of the QML estimator,

we shall need the consistency and asymptotic normality of the PML estimator, plus some condition on the rate

of the sequence qn of finite terms in the approximation of A−1
ρ or B−1

λ , thus ensuring asymptotic equivalence

of the QML and PML estimators.

Following the notation introduced in Section 3, let

θ̃n = arg max
θ∈Θ

˜̀
n(θ; y,X),

7A maximum weighted matching is the set of edges of a graph, with no nodes in common, that maximizes the total weights.
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where ˜̀
n is the quasi -loglikelihood defined there. Moreover, to discriminate between the exact bivariate

probabilities and those based on the q−th order finite sum approximation, we denote the last by p̃g(d1, d2),

and the former by pg(d1, d2)8. There is the following link between the ˜̀
n and `n:

E
(

˜̀
n(θ; y,X) | X

)
=
∑
g

E

 ∑
d=(d1,d2)

1

G
I{yg1 = d1, yg2 = d2} log

p̃g,(d1, d2)

pg,(d1, d2)
| X

+ E (`n(θ; y,X) | X)

= E (`n(θ; y,X) | X)− 1

G

∑
g

KL(pg,||p̃g,).

(21)

Thus, consistency and asymptotic normality come from the analogous properties of the PML estimator, and

from negligibility of the term 1
G

∑
gKL(pg,‖p̃g,).

In line with Wang et al. (2013), we need to add the following assumptions.

Assumption 4. ` = limn E`n exists. ` attains a unique maximum over the compact set Θ at the interior point

θ0.

Assumption 5. The density of observations in any region whose area exceeds a fixed minimum is bounded.

Moreover,

sup
1≤g≤G

∥∥∥∥∥∥
1∑

d1,d2=0

1

pg(d1, d2)

∥∥∥∥∥∥ <∞.
Assumption 6. supn,g,h |Cov(ygi, yhi| ≤ α(dgh), where dgh is the distance between group g and h and α(c)→ 0

as c→∞

Assumption 7. (a) There exists a sequence {qn}, with limn→∞ qn =∞, such that the matrix
∑qn
h=0 ρ

hWh
n is

nonsingular (and
∑qn
h=0 λ

hMh
n is nonsingular) for all n and for all |ρ| ∈ (−1/τ , 1/τ) (and |λ| ∈ (−1/τ , 1/τ)).

(b) limn→∞ log n/qn = 0.

Assumptions 4–6 are taken from Wang et al. (2013) and are used to prove consistency of the PML estimator.

The first is a standard assumption for M–type estimators and also gives an identification condition. Assumption

5 is the same as (iv) of Theorem 1 in Wang et al. (2013) and it rules out the possibility that, for some

couples, one (or more) of the 4 outcomes has conditional probability equal to zero. Assumption 6 is the mixing

condition given in Wang et al. (2013), ensuring that dependence between observations rapidly decays with their

distance. Finally, Assumption 7 is necessary for the asymptotic behavior of the QML estimator. In particular,

Assumption 7(a) guarantees invertibility of the approximating sum
∑qn
h=0 ρ

hWh
n, for all qn and is therefore

necessary for identification. Assumption 7(b) defines the minimum rate at which the number of approximating

terms qn has to increase with the sample size. This is a mild assumption since it requires qn = O(nε) for some

ε > 0.

8Note that both probabilities follow equations (11), the only difference being on the computation of terms Xρ and of the

elements of Σg .
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Theorem 5.1. Under Assumptions 1–6, then, ‖θ̂n − θ0‖ = op(1). If further Assumption 7(a) holds, then,

‖θ̃n − θ0‖ = op(1).

In order to prove asymptotic normality, we need the following further assumptions.

Assumption 8. For all fixed d > 0,

lim
k→∞

k2α(kd)

α(d)
= 0.

Assumption 9. The sampling area grows uniformly at a rate of
√
n in two non-opposing directions.

Assumption 10. The matrices

J(θ0) = lim
n
GnE

(
∂`n
∂θ

(θ0)
∂`n

∂θ′
(θ0)

)
and

H(θ0) = −E H(θ0) = −E

(
∂2

∂θ0∂θ
′
0

`n

)
are positive definite.

Theorem 5.2. Under Assumptions 1–6 and 8–10,

√
n(θ̂ − θ0)→ N

(
0,H(θ0)−1J(θ0)H(θ0)−1

)
(22)

If moreover Assumption 7 (a)-(b) holds, then

√
n(θ̃ − θ0)→ N

(
0,H(θ0)−1J(θ0)H(θ0)−1

)
(23)

Assumptions 8–10 are those used by Wang et al. (2013) to prove Theorem 2. Assumption 10 is quite

standard in a MLE framework, while 8 and 9 are necessary to apply Bernstein’s blocking method, used in

McLeish’s central limit theorem for dependent processes, see McLeish (1974).

Consistent estimation of H(θ0) and J(θ0) = limnGnE[∇(θ0)∇(θ0)′], yelds a consistent estimator for the

covariance matrix of θ̂, In particular, H(θ0) can be estimated through the average of the negative Hessian matrix

at θ̂ or θ̃. One possible way to estimate J(θ0) is to use the approach by Conley (1999) and its adaptation to

non–stationary spatial processes by Kelejian and Prucha (2007). The resulting estimator for J(θ0) is basically

the same as Theorem 3 in Wang et al. (2013), under conditions that are a simple modification of those therein.

Another estimator could be obtained from the computation of 1
G

∑G
g=1 E

[
∇g(θ̂)∇g(θ̂)′

]
, by using the explicit

formulas for ∇g(θ) given in the Appendix. A third approach, that is the one we follow here, consists in a

parametric bootstrap estimation: given θ̂, we resample iid errors and use the estimated reduced latent model

(3) to generate the latent variables y∗b and the corresponding bootstrap sample (yb,X), for b = 1, . . . , B. We

finally estimate the covariance matrix of θ̂ through the empirical covariance matrix of the bootstrap estimates

θ̂b (see Section 8).
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6. Marginal effects

In nonlinear regressions, the interpretation of the marginal effects in terms of the change in the conditional

mean of y when regressors X change by one unit is no longer possible. The effects arising from changes in the

explanatory variables depend in a nonlinear way on the levels of these variables, i.e. changes in the explanatory

variable near the mean have a very different impact on decision probabilities than changes in very low or high

values. For spatial autoregressive probit models, the nonlinearity increases in the evaluation of the marginal

effects, see Beron and Vijverberg (2004), LeSage et al. (2011). Recently, Billé (2014) has also pointed out

the main consequences in evaluating marginal effects with and without the consideration of heteroskedasticity

implied by the spatial autocorrelation coefficient.

Let x.h = (x1h, x2h, ..., xih, ..., xnh)
′

an n–dimensional vector of units referred to the h–th regressor,

h = 1, . . . , k, and xi. = (xi1, xi2, ..., xih, ..., xik)
′

a k–dimensional vector of regressors referred to unit i. By

considering equations (4) and (5), we propose the following specifications of the marginal effects

∂P
(
yi = 1 | x′i.,

∑
j wijy

∗
j

)
∂x′.h

|x̄ = φ
(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X̄

}
i.
β
)
{Σ−1/2

ν(ρ,λ)}ii{A
−1
ρ }i.βh

∂P
(
yi = 1 | x′i.,

∑
j wijy

∗
j

)
∂x′.h

|x = φ
(
{Σν(ρ,λ)}

−1/2
ii

{
A−1
ρ X

}
i.
β
)
{Σ−1/2

ν(ρ,λ)}ii{A
−1
ρ }i.βh (24)

where Σν(ρ,λ) is the variance–covariance matrix implied by the reduced form of a SARAR(1,1)–probit model

and Σ
−1/2
ν(ρ,λ) =

{
σνi
−1
}

, A−1
ρ = (I− ρW)

−1
, X̄ is an n by k matrix of regressor–means, ( · )i. considers the i–th

row of the matrix inside, and ( · )ii the i–th diagonal element of a square matrix. Note that Σν(ρ,λ) reduces to

Σu(ρ) for a SAR(1)–probit specification as in equation (6) with u = A−1
ρ ε.

The first specification of equations (24) explains the impact of a marginal change in the mean of the

h–th regressor, i.e. x̄.h, on the conditional probability of {yi = 1}, i.e. P
(
yi = 1 | x′i.,

∑
j wijy

∗
j

)
, setting

x̄.h′ for all the remaining regressors, h′ = 1, . . . , k − 1. The second specification of equations (24) considers,

instead, the marginal impact evaluated at each single value of x.h. The results are two n–dimensional square

matrices for {y1, y2, . . . , yn}. Both the specifications should be evaluated with consistent estimates of the

spatial autocorrelation coefficients
(
ρ̂, λ̂
)

. In section 7.2.1 we report results on the robustness of the marginal

effects due to model misspecification implied by wrong assumed weighting matrices.

Spatial marginal effects are then split into an average direct impact and an average indirect impact. The

average of the main diagonal elements of the n–dimensional matrix, in both the equations, is the average

direct effect (i.e., the impact from their own regions). The average of the cumulated off–diagonal elements is

the average indirect effect – due to spatial spillover effects (i.e., the impact from other regions). Finally, the

average total effects is the sum of them (LeSage and Pace, 2009). Changes in the value of an explanatory

variable in a single observation (i.e. a spatial unit) i may influence all the n − 1 other observations. The

scalar summary measure of indirect effects cumulates the spatial spillovers falling on all other observations,

17



but the magnitude of impact will be greatest for nearby neighbors and declines in magnitude for higher–order

neighbors. This comes out from the infinite series expansion in equation (2). LeSage et al. (2011) pointed

out the need to calculate measures of dispersion for these estimates. In Section 7 we give some results on the

marginal effects and their measures of dispersion based on our Monte Carlo simulations.

Observation–level total effects estimates, sorted from low–to–high values of each regressors, can be also

viewed as an important measure of spatial variation in the impacts (Lacombe and LeSage, 2013). This kind of

interpretation permits also to account for spatial heterogeneity due to the variation over space of the marginal

impacts with respect to the spatial distribution of the regressors9. Within nonlinear models, the possibility of

evaluating a marginal impact with respect to a particular value xih have the same meaning of considering a

marginal impact in a particular region/site for regressor h. We show some results on this issue in the empirical

application in Section 8. Finally, note that the specification of our marginal effects are different compared with

those proposed by LeSage et al. (2011) and Beron and Vijverberg (2004).

7. Finite sample properties

In this section we study the finite sample properties of our PMLE for a SAR(1)–probit model specified in

equation (6) and a SARAR(1,1)-probit model specified in equation (1). For the finite sample properties of the

linear SAR(1) model see e.g. Bao and Ullah (2007).

We plan different Monte Carlo experiments. All the DGPs are based on a fixed matrix X = [x.0,x.1,x.2] of

dimension n×3, which is composed by two regressors x.1, x.2 and a constant x.0, with xij = (x1j ,x2j , . . . ,xnj)
′

and j = 0, 1, 2. The regressor x.1 is drawn from a U (−1, 1) distribution and x.2 is drawn from a N (0, 1),

whereas the true beta vector of the parameters is fixed to β = (0, 1,−0.5)
′
. The autoregressive parameter

ρ in the SAR(1)–probit experiment takes the values (−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8) and Wn is a

non–negative weight and then normalized n–dimensional weight matrix. Finally, the number of simulation

runs are 1000 each.

7.1. Weighting matrices

In our Monte Carlo experiment we consider both sparse and dense matrices. The former is a k–nearest

neighbor matrix built on regular square lattice grids of dimensions (a) 10× 10 with n = 100, (b) 30× 30 with

n = 900, (c) 50×50 with n = 2500. The latter is an inverse distance–based matrix built on randomly generated

coordinates from U (0, 50) and U (−70, 20) of the same dimension n as before. The coordinates are then used

to define (Euclidean) distances among couples of units, and they can also be interpreted as centroids of areal

units in the case of a discrete space.

9See Billé et al. (2017) for a two–step approach specifically thought to account for unobserved discrete spatial heterogeneity in

the beta’s coefficients via iterated local estimation procedures.
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It is worth noting that, in the case of the k–nn criterion the spatial information does not depend on ”how

much units are distant each other” but it guarantees a constant spatial statistical information, ensuring no

difference between simulations built on regular/irregular grids and randomly generated coordinates. Regular

grids are also suitable to avoid the problem of selecting more distant observations in the neighboring set Nk
since they are somehow realistic for homogeneous point patterns.

The weighting matrix Wn must be normalized to obtain a proper parameter space of its corresponding

autoregressive coefficient ρ. In the majority of the experiments, we consider the row–normalization rule

(i.e. Wn is a row–stochastic matrix). With inverse distance–based matrices, the row–normalization does

not lead to an easy economic interpretation of the spatial impacts. In particular, when considering distance

decay or negative exponential functions rather than first–order contiguity matrices (e.g. queen criterion), the

interpretation of the absolute role of the distance metric is usually lost. Moreover, as emphasized by Kelejian

and Prucha (2010), the model with row–normalized weight matrices10 is no more equivalent to the original

spatial one, with the exception of the k–nn approach.

For some experiments we then consider the spectral–normalization rule by rescaling the weighting matrix

using its largest eigenvalue in absolute value (i.e. spectral radius), in order to ensure: (i) a proper parameter

space for ρ (see lemma 2.1), (ii) the equivalence of the spatial models before and after normalization of the

weights.

7.2. Finite sample results: SAR model

In this Section we show the finite sample properties of the PMLE and the marginal effects calculated as in

equation (24). The DGPs are built on the SAR(1)–probit model with a fixed k–nn weighting matrix (k = 11),

distinguishing between different true values of ρ and sample sizes n. Results are reported in Tables A.1, A.2

and Figure B.1.

Table A.1 reports the summary statistics of our PMLE. The estimates of the β vector are good in terms

of both unbiassedness and consistency in finite samples, aside from the different true values assumed by the

autocorrelation ρ. We slightly underestimate the autocorrelation parameter ρ, especially as the true value

approaches its upper limit, while the standard deviation (sd) and RMSE decreases from negative values to

the positive ones. Figure B.1 shows the Gaussian Kernel density functions for different sample sizes. The

empirical distributions for all the parameters highly improve as the sample size increases. The Monte Carlo

distribution of the estimators of the β parameters is approximately bell–shaped, whereas the distribution of ρ̂

is quite asymmetric for n = 100, although the asymmetry rapidly tends to disappear for larger sample sizes.

Table A.2 shows the direct, indirect and total impacts for n = 900 calculated as in equations (24), with

10Row–normalization has the appealing role of interpreting the spatial lag function as a weighted average of the (first–order)

neighbors for each site in space.
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respect to the mean value and to each observation, respectively. In both cases, mean impacts m (ρ̂) are highly

close to their true values m (ρ) for different values of ρ. Slight differences can be found as the value of ρ

increases in absolute value, manly due to differences in the indirect effects.

Subsections 7.2.1 and 7.2.2 discuss two issues, related to modeling and to the estimation procedure,

respectively. Specifically, in Subsection 7.2.1 we try to measure the effect that model misspecification has

on the estimates of both parameters and marginal effects, when misspecification is induced by an incorrect

choice of the weight matrix. The second issue concerns the loss of information due to the approximation of

the exact loglikelihood by partial loglikelihood, which is naturally expected to increase as the weight matrix

becomes more dense. In Subsection 7.2.2 we thus investigate the ability of the algorithm given in Section 4 to

mitigate the effect of this information loss.

7.2.1. Misspecification of W

In this Section we provide some Monte Carlo results to check the robustness of our PMLE with a

misspecification of the SAR(1)–probit model by assuming a sparse weighting matrix rather than a dense

one. We fixed n = 900, while ρ = (−0.6, 0.6) and β = (0, 1,−0.5)
′
. The true dense matrix is built on inverse

distance–based functions, distinguishing between the row–normalization (Wrn) and the spectral–normalization

(Wsn) case. Whereas, the assumed sparse weighting matrix is based on a k–nn approach, with k = 11 as before

(Wknn).

Results are reported in Tables A.4, A.5 and Figure B.2. Table A.4 shows that the PML estimator of the

β coefficients is quite robust with misspecified Wn matrices. The misspecification of the ρ coefficient is more

evident, as expected. Table A.5 reports the main empirical results on the robustness of the marginal impacts.

The indirect effects are not well accounted for due to the estimation of ρ, but the direct effects are robust.

Finally, Figure B.2 shows the Gaussian Kernel density functions for both types of misspecification, which are

quite symmetric around the true values, with the exception of ρ. There seems to be no significant differences in

terms of the distributions when considering the two type of normalization rules, i.e. Wsn and Wrn. Notable

exception is the case of β1, where the row–normalization has higher probability density on the true value of

the parameter, while the spectral–normalization is more symmetric around its mean.

7.2.2. The choice of couples and sparsity of W

We run some Monte Carlo experiments, aimed at assessing the performance of the algorithm introduced in

Section 411. Data are simulated from a SAR(1)–probit with β = (0, 1,−0.5)
′

and ρ = 0.6, using either a k–nn

11We use the R library Rpython (https://cran.r-project.org/web/packages/rPython/index.html) to run a program using the

function networkx.max weight matching from the package networkx (https://pypi.python.org/pypi/networkx/2.0), which is a

Python package for the creation and manipulation of graphs and networks.
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matrix with k = 11, 25, 50, 100 or an inverse distance matrix. We compute both the PML and QML estimates

using an initial guess for the parameter ρ̃ equal in sign to the true value ρ, and then compare these estimates

with the PML/QML estimates obtained without the application of the maximum matching algorithm (the

default pair choice corresponds to coupling units (2g− 1, 2g) for all g). In the case of distance weight matrices,

in order to figure out the sensitivity of the procedure to the initial guess, we use two different values of ρ̃, both

equal in sign to the true value ρ, one exactly equal to ρ and the other significantly smaller.

We expect the impact of the pair choice to increase as Wn becomes more dense. Indeed, in the k-nn case,

the maximum matching method proves to be slightly inefficient compared to the default pair choice, until

k = 50, when they are pretty much the same in terms of both sd and RMSE. For k = 100, the situation is

reversed, with the maximum–matching sd and RMSE about 10% smaller relative to the default case. However,

as k increases, sd of both estimators increases rapidly12.

Table A.3 reports the main summary statistics of the MC distribution of the default and maximum–matching

estimators when Wn is an inverse distance weight matrix. The gain in terms of sd is quite relevant (−36% for

the sd of ρ̂ in the case of the spectral–normalization), while there is a smaller increase of negative bias13, with

an overall variation of RMSE of −30%. There is a slight improvement in the sd of the β̂’s and no effect on

their means. The initial guess ρ̃ appears to have a negligible effect.

7.3. Finite sample results: SARAR model

We conclude our simulation analysis by showing some results of the estimation of 200 repeated draws of

SARAR(1,1)–probit samples of medium sample size (n = 900). We draw samples from model in equation (1),

assuming β = (0, 1,−0.5)
′

and ρ = 0.6 fixed. The weight matrix Wn is a k–nn with number of neighbors equal

to 11. For the weighting matrix Mn, we choose a Queen contiguity criterion to define the weights inside and

then we row–standardize. The choice of the two very different weight matrices prevents possible misbehavior

of the estimator due to identifiability issues, it being understood that the β coefficients are significant14.

Table A.6 presents the results, for different values of the parameter λ, namely λ = (0.8, 0.6, 0.4, 0.2).

Similarly to what happens in the SAR case, the estimates of the β parameters are quite precise, while both

the autocorrelation coefficients tend to be downward biased. The bias of ρ only seems to be slightly increasing

with λ; similarly, the lower the true value of λ the lower the bias of λ̂.

The standard deviation of the estimators of all the parameters (except λ itself) is monotonically increasing

with λ: the relative increment of the standard deviations from case λ = 0.2 to λ = 0.8 is between 70% and

242%. Further, a comparison of the RMSE from Table A.1 (case ρ = 0.6) shows that ρ̂ and β̂0 are particularly

12The tables are available upon request.
13This seems to be a consequence of a better behavior of the loglikelihood function that reduces drastically the occurrence of

an optimum value ρ̂ near the boundary (ρ̂ ≈ 1).
14In the nonlinear case, it is possible that the two requirements must be contemporaneously satisfied to ensure identifications.
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sensitive to the introduction of spatial autocorrelation in the errors, showing an increment of about 50% in

the case of minimum autocorrelation (λ = 0.2), whereas the RMSE of the other estimators remains almost

unchanged.

Finally, to get an intuition of the behavior in the case of the dense weight matrix, we make some simulations

by using an inverse distance matrix Mn. Although the performance of λ̂ dramatically get worse in terms of

RMSE (mainly due to a boost in sd) switching from a sparse to a dense weight matrix, governing the error

spatial correlation structure has almost no effect on all the other parameters, both in terms of bias and sd.

This also implies that the estimation of the marginal effects is not affected by this change15.

8. Empirical application

In this section we propose to replicate the empirical application in LeSage et al. (2011) by estimating the

parameter sets θ =
(
β′, ρ

)′
with our QMLE. The model specification is referred to a SAR(1)–probit in equation

(6). The data set used for this exploration entails 673 establishments tracked weekly during the year following

Hurricane Katrina, and then seasonally and annually in subsequent years. The data set is freely available in

the R package ProbitSpatial and details are referred to LeSage et al. (2011). We have found some points/units

to have the same coordinates. To avoid “zero–distance” problems we eliminate 15 observations from the data

set, with a final sample dimension of n = 658.

The economic aim was to evaluate which factors have influenced decisions of establishments in reopening

in the aftermath of Hurricane Katrina. A probabilistic decision mechanmism is then easily described by a

probit model, where each decision to reopen is defined by the event {yi = 1}. Spatial effects are accounted

for to consider potential endogenous network effects among these decisions, so that the utility associated to an

establishment reopening directly depends on the neighboring utilities, which in turn have effects on reopening

decisions.

Coherently with their analysis, a SAR(1)–probit model is estimated for three different time horizons: (a)

0–3 months, (b) 0–6 months, (c) 0–12 months. In each time horizon firms’ decisions are supposed to be

simultaneous. Explanatory variables are the flood depth (measured in feet) at the location of the individual

establishments, (log) median income for the census block group in which the store was located, two dummy

variables reflecting small and large size firms, with medium size firms representing the omitted class, two dummy

variables reflecting low and high socio–economic class of the store clientèle (with the middle socio-economic

class excluded) and two dummy variables for type of store ownership, one reflecting sole proprietorships and

the other representing national chains (with regional chains representing the excluded class).

The weighting matrix is built on a k-nn criterion with k = 11 for time horizon (a) and k = 15 for time

horizons (b), (c). We obtain standard errors of our PML estimates by sampling from the latent variable

15Results available upon request.
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distributions in the estimated reduced form model in equation (3), and then define the corresponding sample

of binary variables yb, b = 1, . . . , B, B = 1000. For each sample (yb,X), a new vector of PML estimates θ̂b is

computed and its distribution over the B = 1000 samples is used to calculate the standard errors.

Table A.7 shows the PML estimates and their standard errors to be compared with those in Table 3 in

LeSage et al. (2011). Table A.8 provides marginal effects, see equations (24), for each time horizon to be

compared with the effects reported in Tables 4,5,6 in LeSage et al. (2011). All tables show that PML estimates

are consistent with Bayesian estimates; in particular, the PLM estimate of the spatial correlation coefficient ρ

is positive and significant, and higher than the corresponding Bayesian estimate, for all the three time horizons.

As a consequence, our estimates of the indirect effects are generally higher, in absolute value, compared to the

corresponding indirect effects reported by LeSage et al. (2011).

9. Conclusions

In this paper we derive the asymptotic properties and evaluate the finite sample properties of a Partial

Maximum Likelihood Estimator (Partial–MLE) for Spatial Autoregressive Probit Model with Autoregressive

disturbances (SARAR(1,1)–probit model). The work is mainly based on the paper proposed by Wang et al.

(2013), although substantial differences can be found. In our paper we consider the more general and interesting

case of correlation among the dependent variables, which specifies at least the SAR(1)–probit rather than a

simple SAE(1)–probit model. In addition, we propose a Kullback–Leibler approach for choosing the couples

that maximize the partial log–likelihood function and we suggest exact formulas for defining the marginal

effects in spatial binary contexts. Finally, we derive explicit expressions of the score vector, which can also can

be used in the approach of Mozharovskyi and Vogler (2016), to improve computations.

The Partial–MLE and the Quasi–MLE are both asymptotically consistent given some regularity conditions.

Our simulations suggest that the estimator performs well even with small sample sizes. The results rapidly

and substantially improve as the sample size increases both in terms of unbiasedness and consistency. All

the distributions are, moreover, bell–shaped from moderate-to-large samples and for all the true values of

correlations. The marginal effects calculated on the simulated data with respect to the mean and with respect

to individual observations are also consistent and quite near to the true values. Also in the SARAR(1,1)–probit

case, the estimator performs reasonably well, although there is a loss in efficiency in particular for ρ̂ and β̂0.

The estimator is also computationally efficient, giving the opportunity to estimate the model even with

large data set. Finally, in our empirical application we use a data set freely available in the R package. Results

suggest that our Partial ML estimator gives parameter estimates and standard deviations quite similar to those

obtained by the Bayesian approach typically used for this type of models. We consider two cases of model

misspecification due to a different assumed weighting matrix: in both these cases the estimator properties and

the direct marginal effects are quite robust in terms of the beta coefficients. This analysis on the other hand
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confirms that an incorrect choice of Wn has a great impact on the estimation of ρ and, as a consequence, of

the indirect effects, thus suggesting that great care must be paid to model selection.

Finally, the criterion proposed for the choice of couples deserves further investigation since it proves to

be a viable and promising method to approximate a complex model with a simple one, with a limited loss in

efficiency and accuracy.
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Appendix A. Tables

n = 100 n = 900 n = 2,500

True Value Mean Median sd RMSE MAD Mean Median sd RMSE MAD Mean Median sd RMSE MAD

β0 = 0.0 -0.016 -0.007 0.323 0.323 0.145 -0.003 -0.003 0.066 0.066 0.043 0.002 0.002 0.037 0.037 0.024

β1 = 1.0 1.058 1.043 0.289 0.294 0.189 1.009 1.003 0.093 0.094 0.065 1.007 1.002 0.054 0.054 0.031

β2 = −0.5 -0.526 -0.517 0.161 0.164 0.108 -0.503 -0.503 0.052 0.052 0.034 -0.499 -0.496 0.034 0.034 0.021

ρ = −0.8 -0.996 -0.927 0.737 0.763 0.547 -0.867 -0.866 0.262 0.270 0.170 -0.833 -0.823 0.159 0.162 0.121

β0 = 0.0 -0.009 -0.005 0.300 0.300 0.127 -0.001 0.001 0.061 0.061 0.039 0.003 0.001 0.036 0.037 0.022

β1 = 1.0 1.056 1.042 0.286 0.292 0.190 1.010 0.999 0.094 0.094 0.062 1.006 1.003 0.054 0.054 0.033

β2 = −0.5 -0.528 -0.519 0.163 0.165 0.104 -0.503 -0.500 0.051 0.051 0.032 -0.499 -0.498 0.033 0.033 0.022

ρ = −0.6 -0.785 -0.664 0.747 0.769 0.537 -0.644 -0.640 0.258 0.262 0.169 -0.624 -0.619 0.156 0.158 0.102

β0 = 0.0 -0.008 -0.008 0.279 0.279 0.118 0.001 -0.001 0.056 0.056 0.037 0.003 0.001 0.034 0.034 0.022

β1 = 1.0 1.055 1.046 0.279 0.284 0.181 1.008 1.000 0.091 0.091 0.060 1.005 1.003 0.054 0.054 0.033

β2 = −0.5 -0.528 -0.522 0.161 0.163 0.099 -0.503 -0.501 0.052 0.052 0.034 -0.498 -0.500 0.033 0.033 0.024

ρ = −0.4 -0.601 -0.447 0.733 0.760 0.479 -0.437 -0.421 0.242 0.245 0.149 -0.416 -0.403 0.147 0.148 0.093

β0 = 0.0 -0.004 -0.007 0.259 0.259 0.104 0.001 -0.000 0.052 0.052 0.032 0.003 0.001 0.031 0.031 0.018

β1 = 1.0 1.056 1.058 0.283 0.288 0.185 1.007 0.996 0.090 0.090 0.059 1.006 1.002 0.054 0.054 0.033

β2 = −0.5 -0.527 -0.521 0.162 0.164 0.100 -0.503 -0.501 0.051 0.051 0.033 -0.498 -0.498 0.034 0.034 0.023

ρ = −0.2 -0.397 -0.223 0.688 0.716 0.426 -0.232 -0.214 0.223 0.225 0.140 -0.215 -0.209 0.132 0.133 0.093

β0 = 0.0 -0.001 -0.007 0.243 0.243 0.097 0.002 -0.000 0.047 0.048 0.029 0.002 -0.002 0.028 0.028 0.017

β1 = 1.0 1.059 1.053 0.287 0.293 0.190 1.007 1.001 0.100 0.100 0.058 1.005 1.002 0.053 0.053 0.035

β2 = −0.5 -0.529 -0.524 0.163 0.165 0.103 -0.501 -0.501 0.057 0.057 0.033 -0.497 -0.496 0.032 0.032 0.022

ρ = 0.0 -0.209 -0.026 0.659 0.691 0.354 -0.030 -0.003 0.200 0.202 0.132 -0.012 -0.008 0.112 0.113 0.081

β0 = 0.0 0.002 -0.007 0.220 0.220 0.093 0.002 0.001 0.042 0.042 0.028 0.003 0.000 0.025 0.025 0.016

β1 = 1.0 1.061 1.050 0.289 0.296 0.183 1.008 1.002 0.088 0.089 0.058 1.004 1.000 0.054 0.054 0.033

β2 = −0.5 -0.536 -0.524 0.165 0.169 0.104 -0.501 -0.497 0.053 0.053 0.032 -0.498 -0.498 0.032 0.032 0.020

ρ = 0.2 0.020 0.178 0.574 0.601 0.280 0.175 0.188 0.165 0.167 0.111 0.190 0.200 0.100 0.100 0.072

β0 = 0.0 0.001 -0.005 0.236 0.236 0.090 0.001 -0.001 0.040 0.040 0.025 0.003 0.002 0.023 0.024 0.016

β1 = 1.0 1.085 1.069 0.298 0.310 0.199 1.009 1.010 0.089 0.090 0.055 1.005 1.000 0.057 0.057 0.036

β2 = −0.5 -0.544 -0.535 0.172 0.177 0.109 -0.500 -0.502 0.054 0.054 0.038 -0.498 -0.498 0.031 0.031 0.020

ρ = 0.4 0.217 0.376 0.537 0.568 0.213 0.378 0.396 0.131 0.133 0.088 0.392 0.400 0.080 0.080 0.056

β0 = 0.0 0.004 -0.009 0.236 0.236 0.082 0.001 0.000 0.036 0.036 0.025 0.002 0.001 0.022 0.022 0.014

β1 = 1.0 1.116 1.097 0.329 0.349 0.220 1.009 1.010 0.098 0.098 0.068 1.007 1.005 0.059 0.060 0.041

β2 = −0.5 -0.557 -0.543 0.194 0.202 0.123 -0.503 -0.501 0.059 0.059 0.041 -0.498 -0.500 0.032 0.032 0.023

ρ = 0.6 0.444 0.572 0.444 0.470 0.150 0.574 0.580 0.095 0.098 0.060 0.586 0.591 0.061 0.063 0.040

β0 = 0.0 0.004 -0.013 0.226 0.226 0.076 0.001 0.001 0.034 0.034 0.023 0.001 0.001 0.020 0.020 0.012

β1 = 1.0 1.198 1.161 0.428 0.472 0.279 1.013 1.007 0.110 0.111 0.073 1.011 1.004 0.075 0.076 0.048

β2 = −0.5 -0.610 -0.576 0.397 0.412 0.149 -0.508 -0.502 0.070 0.071 0.049 -0.498 -0.500 0.039 0.039 0.026

ρ = 0.8 0.659 0.743 0.306 0.337 0.095 0.738 0.747 0.065 0.090 0.040 0.748 0.750 0.041 0.066 0.025

Table A.1: Summary statistics for the QML estimates of the SAR(1)–probit coefficients considering different n sample sizes for

the simulated spatial series of observations on regular grids. The weighting matrix Wn is a row–normalized k–nn matrix with

k = 11. The number of Monte Carlo replications are fixed to 1,000. The rows sd, RMSE and MAD report the empirical standard

deviations, empirical root mean square errors of the estimated coefficients from the true values, and empirical median absolute

deviations, respectively.
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ρ = −0.8 ρ = −0.6 ρ = −0.4 ρ = −0.2 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8

Regressors m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂) m (ρ) m (ρ̂)

X̄ , x.1

Direct

Mean 0.392 0.394 0.395 0.397 0.397 0.400 0.398 0.401 0.398 0.400 0.394 0.396 0.384 0.387 0.351 0.367

sd 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.038

Indirect

Mean -0.184 -0.189 -0.154 -0.155 -0.117 -0.116 -0.067 -0.066 0.098 0.103 0.251 0.258 0.530 0.523 1.207 0.980

sd 0.041 0.047 0.054 0.063 0.095 0.125 0.185 0.304

Total

Mean 0.208 0.205 0.240 0.242 0.280 0.283 0.331 0.335 0.496 0.504 0.646 0.654 0.914 0.911 1.558 1.347

sd 0.039 0.047 0.055 0.066 0.101 0.133 0.196 0.318

X̄ , x.2

Direct

Mean -0.196 -0.197 -0.197 -0.198 -0.198 -0.199 -0.199 -0.200 -0.199 -0.200 -0.197 -0.197 -0.192 -0.194 -0.176 -0.184

sd 0.020 0.020 0.020 0.020 0.021 0.021 0.021 0.024

Indirect

Mean 0.092 0.094 0.077 0.077 0.058 0.058 0.034 0.033 -0.049 -0.052 -0.126 -0.128 -0.265 -0.262 -0.603 -0.492

sd 0.021 0.024 0.027 0.032 0.048 0.063 0.095 0.155

Total

Mean -0.104 -0.103 -0.120 -0.121 -0.140 -0.142 -0.165 -0.167 -0.248 -0.251 -0.323 -0.326 -0.457 -0.456 -0.779 -0.676

sd 0.021 0.025 0.030 0.035 0.054 0.070 0.103 0.166

X , x.1

Direct

Mean 0.311 0.311 0.313 0.313 0.315 0.315 0.315 0.316 0.315 0.315 0.311 0.312 0.303 0.304 0.277 0.287

sd 0.021 0.021 0.021 0.021 0.020 0.021 0.022 0.023

Indirect

Mean -0.146 -0.149 -0.122 -0.122 -0.093 -0.091 -0.053 -0.052 0.077 0.081 0.198 0.202 0.419 0.410 0.953 0.765

sd 0.031 0.036 0.042 0.049 0.074 0.097 0.140 0.222

Total

Mean 0.165 0.162 0.191 0.191 0.222 0.223 0.262 0.264 0.392 0.396 0.510 0.514 0.722 0.714 1.231 1.052

sd 0.030 0.036 0.042 0.051 0.076 0.100 0.143 0.225

X , x.2

Direct

Mean -0.156 -0.155 -0.157 -0.157 -0.157 -0.157 -0.158 -0.158 -0.157 -0.157 -0.156 -0.155 -0.152 -0.152 -0.139 -0.144

sd 0.014 0.013 0.013 0.013 0.014 0.014 0.014 0.016

Indirect

Mean 0.073 0.074 0.061 0.061 0.046 0.045 0.027 0.026 -0.039 -0.041 -0.099 -0.101 -0.209 -0.205 -0.477 -0.384

sd 0.016 0.018 0.021 0.025 0.037 0.049 0.072 0.113

Total

Mean -0.083 -0.081 -0.095 -0.096 -0.111 -0.112 -0.131 -0.132 -0.196 -0.198 -0.255 -0.256 -0.361 -0.357 -0.615 -0.528

sd 0.016 0.020 0.023 0.027 0.041 0.053 0.076 0.118

Table A.2: Marginal effects summary statistics for different estimated coefficients ρ̂. X̄ is referred to marginal impacts as in

equation (27), and X as in equation (28). The total impacts are split into the direct and indirect effects and compared with the

true ones m (ρ). The simulated spatial series are referred to Table A.1 with n = 900, Wn = Wk−nn, and the regressors are

x.1 ∼ U (−1, 1), x.2 ∼ N (0, 1).
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n = 900 Default pairs quasi-max-matching pairs max-matching pairs

Wn = Wsn β0 β1 β2 ρ β0 β1 β2 ρ β0 β1 β2 ρ

Mean 0.004 1.091 –0.497 0.433 0.004 1.088 -0.499 0.397 0.004 1.088 -0.498 0.401

Median -0.003 1.044 -0.496 0.591 -0.003 1.071 -0.497 0.505 -0.003 1.065 -0.497 0.504

sd 0.076 0.181 0.054 0.528 0.061 0.140 0.054 0.339 0.059 0.139 0.054 0.338

RMSE 0.076 0.203 0.054 0.554 0.061 0.165 0.054 0.395 0.059 0.164 0.054 0.392

Wn = Wrn β0 β1 β2 ρ β0 β1 β2 ρ β0 β1 β2 ρ

Mean 0.006 1.129 –0.500 0.483 0.005 1.119 -0.499 0.468 0.005 1.119 -0.499 0.469

Median -0.003 1.051 -0.498 0.711 -0.002 1.082 -0.499 0.561 -0.002 1.082 -0.499 0.568

sd 0.083 0.241 0.055 0.558 0.073 0.196 0.054 0.459 0.074 0.198 0.054 0.463

RMSE 0.083 0.273 0.055 0.570 0.074 0.229 0.054 0.478 0.074 0.231 0.054 0.481

Table A.3: Summary statistics for the PML estimates of the SAR(1)–probit coefficients using alternative choices of pairs. The first

columns correspond to the default choice, i.e. g ≡ (2g − 1, 2g); the other two sets of estimates refer to the algorithm proposed in

Section 4, with different initial guess of the parameter ρ (namely, ρ̃ = 0.2, in the quasi-max-matching, ρ̃ = 0.6 in the max-matching

case). Here, θ0 = (0, 1,−0.5, 0.6) and the two panels refer to Wn = Wsn (inverse distance matrix with spectral normalization)

and Wn = Wrn respectively (inverse distance matrix with row normalization).

β0 β1 β2 ρ β0 β1 β2 ρ

True Matrix/Value 0 1 -0.5 0.6 0 1 -0.5 -0.6

Wsn

Mean 0.007 1.177 -0.502 0.014 0.002 0.978 -0.499 -0.104

Median 0.003 1.175 -0.501 0.039 -0.002 0.902 -0.496 -0.058

sd 0.065 0.339 0.057 0.279 0.045 0.299 0.054 0.306

RMSE 0.066 0.382 0.057 0.649 0.045 0.300 0.054 0.583

MAD 0.038 0.152 0.034 0.165 0.024 0.191 0.033 0.216

Wrn

Mean 0.011 1.205 -0.505 0.071 0.002 0.936 -0.498 -0.116

Median 0.005 1.117 -0.503 0.136 -0.001 0.879 -0.494 -0.077

sd 0.086 0.439 0.053 0.324 0.043 0.288 0.055 0.311

RMSE 0.087 0.485 0.053 0.620 0.043 0.295 0.055 0.575

MAD 0.047 0.256 0.034 0.198 0.023 0.197 0.035 0.214

Table A.4: Summary statistics for the QML estimates of the SAR(1)–probit coefficients when Wn is misspecified. The weighting

matrix used to estimate the model is Wn = Wk−nn with k = 11. The sample size is fixed to n = 900 and ρ = (−0.6, 0.6).
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Wsn Wrn

ρ = 0.6 X̄ X X̄ X

Regressors m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper m (ρ) m (ρ̂) Lower Upper

x.1

Direct

Mean 0.399 0.467 0.242 0.731 0.301 0.350 0.184 0.557 0.398 0.477 0.240 0.864 0.294 0.349 0.177 0.635

sd 0.133 0.099 0.173 0.125

Indirect

Mean 0.329 0.009 -0.264 0.217 0.252 0.005 -0.207 0.165 0.595 0.032 -0.349 0.267 0.439 0.023 -0.260 0.198

sd 0.135 0.101 0.168 0.124

Total

Mean 0.728 0.476 0.351 0.616 0.553 0.355 0.284 0.419 0.993 0.508 0.423 0.591 0.732 0.373 0.333 0.410

sd 0.067 0.035 0.043 0.020

x.2

Direct

Mean -0.199 -0.199 -0.240 -0.160 -0.151 -0.149 -0.176 -0.120 -0.199 -0.199 -0.239 -0.160 -0.147 -0.146 -0.170 -0.119

sd 0.023 0.016 0.021 0.013

Indirect

Mean -0.165 -0.018 -0.165 0.076 -0.126 -0.013 -0.125 0.057 -0.297 -0.038 -0.219 0.084 -0.219 -0.028 -0.163 0.063

sd 0.063 0.048 0.078 0.057

Total

Mean -0.364 -0.217 -0.372 -0.108 -0.276 -0.162 -0.276 -0.086 -0.496 -0.237 -0.427 -0.107 -0.366 -0.174 -0.311 -0.081

sd 0.067 0.049 0.080 0.058

ρ = −0.6

x.1

Direct

Mean 0.399 0.389 0.215 0.651 0.325 0.315 0.169 0.530 0.399 0.467 0.242 0.731 0.301 0.350 0.184 0.557

sd 0.118 0.093 0.133 0.099

Indirect

Mean -0.123 -0.040 -0.300 0.129 -0.101 -0.032 -0.250 0.106 0.329 0.009 -0.264 0.217 0.252 0.005 -0.207 0.165

sd 0.111 0.090 0.135 0.101

Total

Mean 0.276 0.349 0.287 0.421 0.224 0.283 0.240 0.323 0.728 0.476 0.351 0.616 0.553 0.355 0.284 0.419

sd 0.034 0.022 0.067 0.035

x.2

Direct

Mean -0.199 -0.198 -0.242 -0.158 -0.162 -0.161 -0.190 -0.134 -0.199 -0.199 -0.240 -0.160 -0.151 -0.149 -0.176 -0.120

sd 0.022 0.014 0.023 0.016

Indirect

Mean 0.061 0.006 -0.136 0.088 0.050 0.005 -0.111 0.070 -0.165 -0.018 -0.165 0.076 -0.126 -0.013 -0.125 0.057

sd 0.055 0.045 0.063 0.048

Total

Mean -0.138 -0.192 -0.347 -0.101 -0.112 -0.156 -0.278 -0.083 -0.364 -0.217 -0.372 -0.108 -0.276 -0.162 -0.276 -0.086

sd 0.058 0.046 0.067 0.049

Table A.5: Marginal effects when Wn is misspecified. The Table reports results related to two true weighting matrices: (i) based

on inverse distance with spectral normalisation Wsn, (ii) based on inverse distance with row normalisation Wrn. The total

impacts are split into the direct and indirect effects and compared with the true ones m (ρ). The simulated spatial series are

referred to Table A.1 with n = 900, a k-nn weighting matrix Wk−nn, ρ = (−0.6, 0.6), and the regressors are x.1 ∼ U (−1, 1),

x.2 ∼ N (0, 1).
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n = 900

True Value Mean Median sd RMSE MAD True Value Mean Median sd RMSE MAD

β0 = 0.0 0.006 -0.001 0.178 0.178 0.145 β0 = 0.0 0.010 -0.002 0.115 0.116 0.058

β1 = 1.0 0.983 0.992 0.198 0.199 0.189 β1 = 1.0 1.008 1.001 0.144 0.145 0.086

β2 = −0.5 -0.488 -0.484 0.106 0.106 0.108 β2 = −0.5 -0.498 -0.484 0.085 0.085 0.054

ρ = 0.6 0.527 0.611 0.323 0.332 0.547 ρ = 0.6 0.542 0.583 0.255 0.261 0.153

λ = 0.8 0.658 0.717 0.246 0.284 0.547 λ = 0.6 0.531 0.561 0.220 0.231 0.137

True Value Mean Median sd RMSE MAD True Value Mean Median sd RMSE MAD

β0 = 0.0 0.005 0.002 0.071 0.071 0.039 β0 = 0.0 0.003 -0.000 0.052 0.052 0.034

β1 = 1.0 1.014 1.010 0.123 0.123 0.082 β1 = 1.0 1.019 1.008 0.112 0.113 0.067

β2 = −0.5 -0.501 -0.489 0.074 0.074 0.049 β2 = −0.5 -0.501 -0.497 0.062 0.062 0.042

ρ = 0.6 0.557 0.589 0.192 0.197 0.109 ρ = 0.6 0.564 0.592 0.150 0.155 0.089

λ = 0.4 0.355 0.376 0.224 0.229 0.156 λ = 0.2 0.165 0.162 0.233 0.236 0.151

Table A.6: Summary statistics for the QML estimates of the SARAR(1,1)–probit coefficients from simulated spatial series of

observations on regular grids. The weighting matrix Wn is a row–normalized k–nn matrix with k = 11, while Mn is a row-

normalized Queen adjacency matrix. The number of Monte Carlo replications are fixed to 200. The rows sd, RMSE and MAD

report the empirical standard deviations, empirical root mean square errors of the estimated coefficients from the true values, and

empirical median absolute deviations, respectively.

First Second Third

Regressors Bayes sd PMLE sd Bayes sd PMLE sd Bayes sd PMLE sd

constant -7.616 2.595 -5.272 3.246 -2.978 2.730 -2.069 3.762 -4.336 2.723 -2.198 3.523

flood depth -0.168 0.044 -0.136 0.062 -0.110 0.035 -0.112 0.095 -0.089 0.034 -0.102 0.097

log(median income) 0.733 0.252 0.510 0.319 0.311 0.268 0.238 0.368 0.484 0.268 0.287 0.345

small size -0.276 0.140 -0.340 0.163 -0.109 0.149 -0.223 0.179 -0.214 0.154 -0.240 0.192

large size -0.329 0.321 -0.361 0.368 -0.372 0.332 -0.442 0.433 -0.357 0.298 -0.424 0.435

low status customers -0.329 0.166 -0.453 0.186 -0.342 0.161 -0.446 0.198 -0.321 0.162 -0.512 0.219

high status customers 0.085 0.131 0.034 0.149 0.041 0.153 -0.006 0.156 -0.101 0.165 -0.241 0.175

sole proprietorship 0.551 0.196 0.560 0.236 0.359 0.181 0.289 0.261 0.146 0.189 0.078 0.298

national chain 0.068 0.378 0.059 0.412 0.295 0.381 -0.099 0.443 -0.120 0.389 -0.621 0.498

Wy 0.382 0.094 0.515 0.158 0.578 0.084 0.621 0.146 0.584 0.093 0.664 0.130

Table A.7: Estimates and standard errors for the first, second and third time horizons of the data set Katrina. The column Bayes

refers to LeSage’s Bayesian estimates, while the column PMLE refers to our PML estimates. Mean and sd are the mean and

standard deviations based on 1000 different binary vectors, by drawing a different vector of innovations ε from a standard normal

distribution.
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PMLE Bayes

Impacts First Second Third First Second Third

Direct

flood depth -0.038 -0.027 -0.022 -0.048 -0.028 -0.020

log(median income) 0.141 0.058 0.062 0.212 0.078 0.111

small size -0.094 -0.054 -0.052 -0.080 -0.028 -0.050

large size -0.100 -0.107 -0.092 -0.095 -0.094 -0.082

low status customers -0.126 -0.108 -0.111 -0.095 -0.086 -0.074

high status customers 0.009 -0.002 -0.052 0.025 0.010 -0.023

sole proprietorship 0.155 0.070 0.017 0.160 0.091 0.033

national chain 0.016 -0.024 -0.134 0.020 0.074 -0.029

Indirect

flood depth -0.037 -0.041 -0.040 -0.030 -0.034 -0.027

log(median income) 0.140 0.088 0.113 0.128 0.097 0.154

small size -0.093 -0.082 -0.094 -0.050 -0.035 -0.072

large size -0.099 -0.163 -0.167 -0.061 -0.121 -0.116

low status customers -0.125 -0.164 -0.202 -0.058 -0.110 -0.102

high status customers 0.009 -0.002 -0.095 0.015 0.012 -0.034

sole proprietorship 0.154 0.107 0.031 0.099 0.118 0.050

national chain 0.016 -0.036 -0.244 0.012 0.100 -0.037

Total

flood depth -0.075 -0.068 -0.062 -0.078 -0.062 -0.048

log(median income) 0.282 0.146 0.175 0.340 0.174 0.265

small size -0.188 -0.136 -0.146 -0.130 -0.063 -0.122

large size -0.200 -0.270 -0.259 -0.156 -0.251 -0.199

low status customers -0.250 -0.272 -0.313 -0.153 -0.195 -0.176

high status customers 0.019 -0.004 -0.147 0.040 0.023 -0.057

sole proprietorship 0.309 0.176 0.048 0.259 0.209 0.083

national chain 0.033 -0.060 -0.378 0.032 0.174 -0.067

Table A.8: Marginal Effects respect to X for the first, second and third time horizons of the data set Katrina. The column Bayes

refers to LeSage’s Bayesian estimates, while the column PMLE refers to our PML estimates.
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Appendix B. Figures
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Figure B.1: Gaussian Kernel density for the PML estimated coefficients of the SAR(1)–probit model for different true values of

ρ: (a) ρ = 0.2, (b) ρ = 0.4, (c) ρ = 0.6 (d) ρ = 0.8. The sample sizes are 100 (in blue), 900 (in red) and 2500 (in purple), while

blue, red and purple vertical lines are the mean values, respectively. Vertical black lines are the true values of the parameters.

The number of Monte Carlo replications are fixed to 1,000.

34



−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

0
2

4
6

8 sn
rn β0

0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

β1

−0.6 −0.4 −0.2 0.0

0
2

4
6

8

β2

−1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

ρ

Figure B.2: Gaussian Kernel density for the PML estimated coefficients of the SAR(1)–probit model when Wn is misspecified.

Two cases of misspecification: (i) Wtrue = Wsn (in blue), (ii) Wtrue = Wrn (in red). The assumed weighting matrix is Wk−nn,

n = 900 and ρ = 0.6 are fixed. Red (blue) vertical and red dashed (blue dashed) vertical lines are the mean values, respectively.

Vertical black lines are the true values of the parameters.

35



0 100 200 300 400 500 600

−
0.

10
0.

00

Spatial units

To
ta

l I
m

pa
ct

s

flood depth

0 100 200 300 400 500 600

0.
0

0.
3

Spatial units

To
ta

l I
m

pa
ct

s

log(median income)

0 100 200 300 400 500 600

−
0.

25
0.

00

Spatial units

To
ta

l I
m

pa
ct

s

small size

0 100 200 300 400 500 600

−
0.

25
0.

00

Spatial units

To
ta

l I
m

pa
ct

s

large size

0 100 200 300 400 500 600

−
0.

35
0.

00

Spatial units

To
ta

l I
m

pa
ct

s

low status customers

0 100 200 300 400 500 600

0.
00

0
0.

02
5

Spatial units

To
ta

l I
m

pa
ct

s
high status customers

0 100 200 300 400 500 600

0.
0

0.
3

Spatial units

To
ta

l I
m

pa
ct

s

sole proprietorship

0 100 200 300 400 500 600

0.
00

0.
04

Spatial units

To
ta

l I
m

pa
ct

s

national chain

Figure B.3: Spatial heterogeneity of the total marginal impacts for each regressor during the first time horizon. Blue lines represent

marginal impacts relative to X̂.
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Figure B.4: Spatial heterogeneity of the total marginal impacts for each regressor during the second time horizon. Blue lines

represent marginal impacts relative to X̂.
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Figure B.5: Spatial heterogeneity of the total marginal impacts for each regressor during the third time horizon. Blue lines

represent marginal impacts relative to X̂.
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Appendix C. Proof of Theorems

Proof of Theorem 3.1

Repeating the steps in Wang et al. (2013), we can easily get

pg(1, 1) = P (yg1 = 1, yg2 = 1 | X) = P (yg1 = 1 | X)P (yg2 = 1 | yg1 = 1,X)

= Φ

(
xρ,g1β

σg1

)
Eug1 (P (yg2 = 1 | X, ug1) | yg1 = 1,X)

= Φ

(
xρ,g1β

σg1

)
Eug1 |X,yg1=1

Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1




=

∫ ∞
−xρ,g1β

1

σg1
φ

(
ug1
σg1

)
Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1

 dug1 (C.1)

from ug2 | ug1 ,X ∼ N
(
τg
σg2
σg1

ug1 , (1− τ2
g )σ2

g,2

)
and noting that the conditional density of ug1 | X, yg1 = 1 is:

p(ug1 | X, yg1 = 1) = I{ug1 ≥ −xρ,g1β}
1
σg1

φ
(
ug1
σg1

)
Φ

(
xρ,g1β
σg1

) .
In a similar way:

pg(1, 0) = Φ

(
xρ,g1β

σg1

)
Eug1 |X,yg1=1

1− Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1




= Φ

(
xρ,g1β

σg1

)
− pg(1, 1), (C.2)

pg(0, 1) =

(
1− Φ

(
xρ,g1β

σg1

))
Eug1 |X,yg1=0

Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1




=

∫ −xρ,g1β

−∞

1

σg1
φ

(
ug1
σg1

)
Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1

 dug1 , (C.3)

pg(0, 0) =

(
1− Φ

(
xρ,g1β

σg1

))
−
∫ −xρ,g1β

−∞

1

σg1
φ

(
ug1
σg1

)
Φ

xρ,g2β +
σg1,g2
σ2
g1

ug1√
σ2
g2 −

σ2
g1,g2

σ2
g1

 dug1

=

(
1− Φ

(
xρ,g1β

σg1

))
− pg(0, 1). (C.4)

The identity of all the formulas with the two equivalent expressions in (??) is straightforward.

39



Proof of Theorem 4.1

(i) For all 2ntuple d = (d1, . . . , d2n), di ∈ {0, 1}, we denote by E(d) = {y∗ = (y∗1 , . . . , y
∗
2n) : 2(dj−0.5)y∗j < 0}.

The 22n sets E(d) for a partition of R2n, and we can thus write

KL(fπ||fθ) =

∫
R2n

fπ(y∗) log
fπ(y∗)

fθ(y∗)
dy∗

=
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fπ(y∗)

fθ(y∗)
dy∗

=
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fπ(y∗)/Pπ(d)

fθ(y∗)/Pθ(d)
dy∗ +

∑
d

Pπ(d) log
Pπ(d)

Pθ(d)

= −
∑
d

Pπ(d)

∫
E(d)

fπ(y∗)

Pπ(d)
log

fθ(y
∗)/Pθ(d)

fπ(y∗)/Pπ(d)
dy∗ +

∑
d

Pπ(d) log
Pπ(d)

Pθ(d)

≥ −
∑
d

Pπ(d) log

∫
E(d)

fπ(y∗)

Pπ(d)

fθ(y
∗)/Pθ(d)

fπ(y∗)/Pπ(d)
dy∗ +KL(Pπ||Pθ)

= KL(Pπ||Pθ)

where we used convexity of the map f(x) = − log x and Jensen’s inequality.

(ii) For any given permutation π ∈ Pn and its permutation matrix Pπ, the densities fπ0 and f0 are n−variate

Gaussian random vectors,

fπ0 ∼ N(Pπ(I− ρWπ)−1Xβ,Σπ)

f0 ∼ N(Pπ(I− ρWπ)−1Xβ,PπΣPπ)

where

Σπ =

G∑
g=1

EgPπΣP′πEg

(see Section 4 for the definition of Eg). From the formula of KL-divergence of two multivariate Gaussian

distributions with the same mean, and by using the properties tr(AB) = tr(BA), |AB| = |A| · |B| and the

fact that log |A| = tr log(A):

KL(fπ0 ||f0) =
1

2

[
tr(PπΣ−1P′πΣπ)− n− log

|PπΣ−1P′π|
|Σπ|

]
=

1

2

[
tr(PπΣ−1P′πΣπ)− log

∣∣PπΣ−1P′πΣπ

∣∣]− n

2

=
1

2

[
tr(A−1) + log |A| − n

]
(C.5)

with

A = PπΣP′πΣ−1
π = Pπ(Aρ)

−1P′πPπ(A′ρ)
−1P′πΣ−1

π

But because of tr(AB) = tr(BA) we can compute the trace of A−1 as:

tr(A−1) = tr(PπΣ−1P′πΣπ) =

G∑
g=1

tr
(
EgPπΣ−1P′πΣπEg

)
.
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and for each g, the trace is equal to the sum c(2g − 1, 2g − 1) + c(2g, 2g), where c(i, j) is the i, j−th term of

P′πΣ−1PπΣπ, that is, because of Σπ is block diagonal,

c(2g − 1, 2g − 1) = σ∗(π(2g − 1), π(2g − 1))σ(π(2g − 1), π(2g − 1)) + σ∗(π(2g − 1), π(2g))σ(π(2g), π(2g − 1))

c(2g, 2g) = σ∗(π(2g), π(2g))σ(π(2g), π(2g)) + σ∗(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))

where σ∗(i, j) and σ(i, j) are the (i, j)−th components of Σ−1 and Σ respectively.

The term log |A| can be written as a sum of G components as well: log |A| = log |Σ| + log |Σ−1
π | =

log |Σ| − log |
∑
g EgPπΣP′πEg|. Since the matrix Σπ =

∑
g EgPπΣP′πEg is a block diagonal matrix, its

determinant is equal to theproduct of determinants of blocks in the diagonal, namely,

log |
∑
g

EgPπΣP′πEg| = log
∏
g

|E′g,gPπΣP′πEg,g| =
∑
g

log |E′g,gPπΣP′πEg,g| =
∑
g

log |C(π(2g − 1), π(2g))|

with Eg,g = (e2g−1, e2g), the (2g−1, 2g)− th columns of Eg, while the determinant of log |Σ| is invariant under

permutations.

From the above computations, one gets that

arg min
π
KL(fπ0 ||f0) = arg min

π

∑
g

(b(π(2g − 1), π(2g))− log |σ̄(π(2g − 1), π(2g))|) ,

where b(i, j) = c(i, i) + c(j, j) and σ̄(i, j) = σ(i, i)σ(j, j)− σ(i, j)σ(j, i). Now, because of

∑
g

[σ∗(π(2g − 1), π(2g − 1))σ(π(2g − 1), π(2g − 1)) + σ∗(π(2g), π(2g))σ(π(2g), π(2g))] =

n∑
i=1

σ∗(i, i)σ(i, i)

for all π, we can write

arg min
π
KL(fπ0 ||f0)

= arg min
π

∑
g

[
σ∗(π(2g − 1), π(2g))σ(π(2g), π(2g − 1)) + σ∗(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))

− log (σ(π(2g − 1), π(2g − 1))σ(π(2g), π(2g))− σ(π(2g), π(2g − 1))σ(π(2g − 1), π(2g))
]

(C.6)

Proof of Theorem 5.1

We first prove consistency of the PML estimator θ̂n = arg max `n(θ; y,X). This can be proved by using the

same arguments of Wang et al. (2013): in particular, given Assumption 4, we need to prove `n(θ)−`(θ) = op(1)

and stochastic equicontinuity of `n(θ). The first result follows by repeating exactly the same arguments as

those of Lemma 2 in Wang et al. (2013).

In order to prove stochastic equicontinuity, following Wang et al. (2013), we need to show that

sup
θ

∣∣∣∣∣ 1

G

G∑
g=1

yg1yg2
∂pg(d1, d2)/∂θ

pg(d1, d2)

∣∣∣∣∣ = Op(1)

for all d1, d2.
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The term at the denominator of the above equation is bounded away from zero because of Assumption 5.

Moreover, all derivatives ∂pg(d1, d2)/∂θ are Op(1) from Lemma Appendix F.2.

Thus, stochastic equicontinuity of `n follows as in Lemma 3 of Wang et al. (2013) and this implies consistency

of θ̂.

The proof of the consistency of θ̃ follows from the asymptotic equivalence of θ̃n with the PML estimator

θ̂n = arg max `n(θ; y,X), which is a consequence of Lemma Appendix F.1. In fact, Assumption 3 implies,

for all finite n/G, that ‖Xβ‖2 = O(1) for all β in the interior of the compact parameter space Θ. Thus,

by Assumption 7 (a), 1
G

∑G
g=1KL(f̃g||fg) = o(1) which implies, because of (21) and Lemma ??–(i), that

‖θ̂n − θ̃n‖ = op(1).

Proof of Theorem 5.2

The result is proven in two steps. First, we decompose
√
n(θ̃ − θ0) =

√
n(θ̃ − θ̂) +

√
n(θ̂ − θ0), and show

that the first term is negligible with respect to the second, where θ̂ is the pairwise ML estimator based on the

exact computation of `n.

Second, we prove that
√
n(θ̂− θ0) has the asymptotic Gaussian distribution (22). This second part follows

the lines of the proof of Theorem 2 in Wang et al. (2013) and those of Pinkse and Slade (1998).

We start by showing that
√
n(θ̃ − θ̂) = op(1). Using the mean value theorem,

∂`n(θ̃)

∂θ
=
∂`n(θ̂)

∂θ
+
∂2`n(θ∗)

∂θ∂θ′
(θ̃ − θ̂) =

∂2`n(θ∗)

∂θ∂θ′
(θ̃ − θ̂)

implies
√
n(θ̃ − θ̂) =

(
∂2`n(θ∗)

∂θ∂θ′

)−1
∂`n(θ̃)

∂θ
.

Boundedness of
(
∂2`n(θ∗)
∂θ∂θ′

)−1

follows from Lemma Appendix F.4, then if

∂`n(θ̃)

∂θ
=
∂ ˜̀
n(θ̃)

∂θ
+ op(1) = op(1) (C.7)

the negligibility of
√
n(θ̃ − θ̂) follows. The proof of (C.7) is in Lemma Appendix F.5.

In order to prove
√
n(θ̂ − θ0)→ N

(
0,H(θ0)−1J(θ0)H(θ0)−1

)
,

we can repeat the same steps in Wang et al. (2013).

We sketch the main steps of the proof. For more details we refer to Wang et al. (2013).

Using the mean value theorem,

0 =
∂`n(θ̂)

∂θ
=
∂`n(θ0)

∂θ
+
∂2`n(θ∗)

∂θ∂θ′
(θ̂ − θ0).

42



Thus, for some θ∗ such that ‖θ∗ − θ0‖ ≤ ‖θ̂ − θ0‖,

√
n(θ̂ − θ0) = −

(
∂2`n(θ∗)

∂θ∂θ′

)−1
∂`n(θ̂)

∂θ
.

Then, we first need to prove that all terms composing ∂2`n(θ∗)
∂θ∂θ′

are bounded (therefore integrable), in order

to conclude, by invoking consistency of θ̂ and the law of large numbers, that

lim
n→∞

∂2`n(θ∗)

∂θ∂θ′
= H(θ0). (C.8)

To prove this, the same exact arguments of Theorem 2 of Wang et al. (2013) apply. First, the bounds∥∥∥∂pg(d1,d2)

∂θ

∥∥∥ < ∞ and
∥∥∥∂2pg(d1,d2)

∂θ∂θ′
∥∥∥ < ∞ come from Lemma Appendix F.2 and Lemma Appendix F.4

respectively.

In order to have the weak limit of
√
n(θ̂ − θ0), we finally need to show that

J−1/2(θ0)
∂`n(θ̂)

∂θ
→d N (0, I) .

Following Wang et al. (2013), and as in Theorem 1 of Pinkse and Slade (1998), we invoke Bernsteins blocking

methods and the McLeishs (1974) central limit theorem for dependent processes (see McLeish (1974)). This

states that, if, for the triangular array Tnkn =
∏kn
j=1(1 + ıγDn,j), where ı2 = −1 and γ is a real constant, the

following conditions are satisfied: (i) {Tn,kn} is uniformly integrable; (ii) ETn,kn →n 1; (iii)
∑kn
j=1D

2
n,j →p 1;

(iv) maxj≤kn |Dn,j | → 0, then
∑kn
j=1Dn,j →d N(0, 1).

Following the reasoning in Wang et al. (2013), the (sequence of) regions where the observations are located

is split into an areas of size
√
bn ×

√
bn, with an growing at a faster rate than bn and such that anbn = n.

Moreover, an and bn are chosen so that bn < n1/2−ε uniformly in n and α(
√
bn)an → 0. Let Λn,j represents the

set of indices of observations falling into the j−th area, and write Dn,j = G−1/2
∑
g∈Λn,j

An,g where An,g is

implicitly defined by z′
√
GJ(θ0)−1/2

(
∂`n(θ0)

∂θ

)
= G−1/2

∑G
g=1An,g, for an arbitrary vector s.t. ‖z‖ = 1. It then

remains to prove conditions (i)–(iv) to ascertain that the sum
∑kn
j=0Dn,j = G−1/2

∑G
g=1An,g is asymptotically

normal.

For the proofs of conditions (iv) and (i), we just follow Wang et al. (2013). Conditions (ii)-(iii) follow from

Lemmas 4–7 in Wang et al. (2013).

Appendix D. Approximation of Σg and Xρ.

As already pointed out by Wang et al. (2013), the terms σg1 , σg2 and σg1,g2 , that are essential for the

computation of the probabilities pg, can not be easily written in closed form as functions of ρ and the weight

matrix. In our case, things are made even worse by the fact that the vectors xρ,gi are complex transformations

of the whole design matrix that also depends on ρ.
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In this Section we give details on the approximation of the terms Xρ,g and σg,· based on finite series

expansion for (I− ρW)−1, mentioned in Section 3.

The contribution of each pair g on the loglikelihood depends on the rows g1, g2 of the matrix A−1
ρ and on

the submatrix Σg. Under Assumption 1,

A−1
ρ =

∞∑
k=0

ρkWk,

implies,

Xρ =

∞∑
k=0

ρkWkX

and, for i = 1, 2,

xρ,gi =

n∑
j=1

∞∑
k=0

ρkw
(k)
gi,j

xj

where w
(k)
l,j is the (l, j)−term of the matrix Wk. Then xρ,gi can be approximated by truncating the series

expansion to the q−th term.

Similarly, since

Σ = A−1
ρ (A′ρ)

−1 =

∞∑
k=0

ρkWk
∞∑
h=0

ρh(W′)h,

we could approximate,

Σ̃ = Ãρ
−1

(Ãρ
′
)−1 =

q∑
k=0

ρkWk

q∑
h=0

ρh(W′)h =

2q∑
k=0

ρk
min(k,q)∑
h=0

Wh(W′)k−h.

This approach can be convenient in the case of large samples, to avoid inversion of large matrices and is

especially useful in the dense matrix case.

Appendix E. Score vector

In this Section we are going to derive the score vectors of the SAR(1) and SARAR(1,1) probit models.

These formulas will be used to easily study the behavior of the score vector, and to perform more efficient

computation of the maximum likelihood estimators (pairwise and quasi).

Appendix E.1. SAR(1)–probit

In order to compute the score vector for the optimization of the quasi pairwise loglikelihood, we need to

compute the derivatives of pg(d1, d2) with respect to β and ρ.
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We first consider differencing with respect to β:

∂pg(1, 1)

∂β
=

∂

∂β

1

σg1

∫ ∞
−xρ,g1β

φ

(
u

σg1

)
Φ (ϕ2,g(u)) du

=
1

σg1
φ

(
−xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) x′ρ,g1 +

∫ ∞
−xρ,g1β

1

σg1
φ

(
u

σg1

)
∂

∂β
Φ (ϕ2,g(u)) du

=
1

σg1
φ

(
−xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) x′ρ,g1 +

1

σg1

∫ ∞
−xρ,g1β

φ

(
u

σg1

)
φ (ϕ2,g(u))

x′ρ,g2√
σ2
g2 −

σ2
g1,g2

σ2
g1

du

where ϕ2,g is given in (10)

After some algebra, we obtain:∫ ∞
−xρ,g1β

φ

(
u

σg1

)
φ (ϕ2,g(u)) du = φ

(
xρ,g2β

σg2

)∫ ∞
−xρ,g1β

1√
2π

exp

{
− (uσg2 + xρ,g2βσg1,g2/σg2)

2

2
(
σ2
g1σ

2
g2 − σ2

g1,g2

) }
du

= φ

(
xρ,g2β

σg2

)
φ (ϕ1,g(−xρ,g2β))

√
σ2
g1 − σ2

g1,g2/σ
2
g2 , (E.1)

where, also ϕ1,g follows from (10). Thus,

∂pg(1, 1)

∂β
=

1

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) x′ρ,g1 +

1

σg2
φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β)) x′ρ,g2 . (E.2)

Similarly,

∂pg(1, 0)

∂β
=

∂

∂β
Φ

(
xρ,g1β

σg1

)
− ∂pg(1, 1)

∂β

= φ

(
xρ,g1β

σg1

)
x′ρ,g1
σg1

− ∂pg(1, 1)

∂β

=
1

σg1
φ

(
xρ,g1β

σg1

)
(1− Φ (ϕ2,g(−xρ,g1β))) x′ρ,g1 −

1

σg2
φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β)) x′ρ,g2 ,(E.3)

and, by repeating the same steps,

∂pg(0, 1)

∂β
= − 1

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) x′ρ,g1 +

1

σg2
φ

(
xρ,g2β

σg2

)
(1− Φ (ϕ1,g(−xρ,g2β))) x′ρ,g2 .(E.4)

∂pg(0, 0)

∂β
= − 1

σg1
φ

(
xρ,g1β

σg1

)
(1− Φ (ϕ2,g(−xρ,g1β))) x′ρ,g1 −

1

σg2
φ

(
xρ,g2β

σg2

)
(1− Φ (ϕ1,g(−xρ,g2β))) x′ρ,g2 .(E.5)

In order to compute the derivatives with respect to ρ, we need to define:

Ẋρ :=
∂Xρ

∂ρ
=
∂A−1

ρ X

∂ρ
= −A−1

ρ

∂Aρ

∂ρ
A−1
ρ X = A−1

ρ WA−1
ρ X, (E.6)

Σ̇ :=
∂Σ

∂ρ
=

∂

∂ρ
(I− ρW)−1(I− ρW′)−1 =

(
∂

∂ρ
A−1
ρ

)
(I− ρW′)−1 + (I− ρW)−1

(
∂

∂ρ
(A′ρ)

−1

)
= −A−1

ρ

∂Aρ

∂ρ
A−1
ρ (A′ρ)

−1 −A−1
ρ (A′ρ)

−1
∂A′ρ
∂ρ

(A′ρ)
−1

= A−1
ρ WΣ + ΣW′(A′ρ)

−1.

(E.7)
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Note that, the matrix Ãρ, described in Appendix D, can be plugged in (E.6) and (E.7) to approximate

Ẋρ, Σ̇ and the score vector.

Now, we denote by Ẋg = (ẋ′g1 , ẋ
′
g2)′ and

Σ̇g =

 σ̇2
g1 σ̇g1,g2

σ̇g1,g2 σ̇2
g2


the submatrix corresponding to rows g1, g2 and the gth diagonal block matrix, respectively of Ẋ = Ẋρ and

Σ̇ = ∂Σ
∂ρ .

We further note that, from

σ̇2
g1 =

∂σ2
g1

∂ρ
=
∂σ2

g1

∂σg1

∂σg1
∂ρ

= 2σg1
∂σg1
∂ρ

we have,
∂σg1
∂ρ =

σ̇2
g1

2σg1
and thus, ∂

∂ρ
1
σg1

= − 1
σ2
g1

σ̇2
g1

2σg1
, and

∂

∂ρ

1

σg1
φ

(
u

σg1

)
=

u

σ2
g1

φ

(
u

σg1

)
u σ̇2

g1

2σ3
g1

− φ
(
u

σg1

)
σ̇2
g1

2σ3
g1

= φ

(
u

σg1

)(
u2

σ2
g1

− 1

)
σ̇2
g1

2σ3
g1

Then, we can write down the derivatives with respect to ρ,

∂

∂ρ
pg(1, 1) =

1

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) ẋg1β

+

∫ ∞
−xρ,g1β

φ

(
u

σg1

)(
u2

σ2
g1

− 1

)
σ̇2
g1

2σ3
g1

Φ (ϕ2,g(u)) du

+
1

σg1

∫ ∞
−xρ,g1β

φ

(
u

σg1

)
φ (ϕ2,g(u))

∂

∂ρ
ϕ2,g(u)du

=
1

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β)) ẋg1β +B + C

(E.8)

The integral in B can be computed by parts and we obtain, after some computation:

B =
σ̇2
g1

2σ2
g1

[
−xρ,g1β

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β))− xρ,g2β

σg2
φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β))

+
σg1,g2 |Σg|1/2

σ2
g1σ

2
g2

φ

(
xρ,g1β

σg1

)
φ (ϕ2,g(−xρ,g1β))

]
where |Σg| = σ2

g1σ
2
g2 − σ

2
g1,g2 .

Note moreover that

φ

(
xρ,g1β
σg1

)
φ (ϕ2,g(−xρ,g1β))

|Σg|1/2
=

φ

(
xρ,g2β
σg2

)
φ (ϕ1,g(−xρ,g2β))

|Σg|1/2
= f(xρ,g1β,xρ,g2β),

is the bivariate density of (ug1 , ug2) ∼ N(0,Σg) at (xρ,g1β,xρ,g2β):

f(xρ,g1β,xρ,g2β) =
1

|Σg|1/22π
exp

{
−1

2
(xρ,g1β,xρ,g2β)′Σ−1

g (xρ,g1β,xρ,g2β)

}
(E.9)

Thus,

B =
σ̇2
g1

2σ2
g1

[
−xρ,g1β

σg1
φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β))− xρ,g2β

σg2
φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β)) +

σg1,g2 |Σg|
σ2
g1σ

2
g2

f(xρ,g1β,xρ,g2β)

]
(E.10)
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In order to compute the intergal in C, we first note that

∂ϕ2,g(u)

∂ρ
=

ẋg2β +
(
σ̇g1,g2σ

2
g1 − σg1,g2 σ̇

2
g1

)
u/(σ2

g1)2

(σ2
g2 − σ2

g1,g2/σ
2
g1)1/2

− 1

2

xρ,g2β +
σg1,g2
σ2
g1

u

(σ2
g2 − σ2

g1,g2/σ
2
g1)3/2

(
σ̇2
g2 −

2σg1,g2 σ̇g1,g2σ
2
g1 − σ

2
g1,g2 σ̇

2
g1

(σ2
g1)2

)
= a+ bu

(E.11)

where

a =
σg1
|Σg|1/2

ẋg2β +
2σg1,g2 σ̇g1,g2σ

2
g1 − σ

2
g1,g2 σ̇

2
g1 − σ

4
g1 σ̇

2
g2

2σg1 |Σg|3/2

b =
1

2|Σg|3/2

[
2
σ2
g1σ

2
g2

σg1
σ̇g1,g2 − σ̇2

g1

(
2
σ2
g2σg1,g2
σg1

−
σ3
g1,g2

σ3
g1

)
−
σg1,g2σ

2
g1

σg1
σ̇2
g2

]
Then, by noting that (performing a change of variable)

C =

∫ ∞
−xρ,g1β/σg1

φ (u)φ (ϕ2,g(uσg1)) (a+ bσg1u)du

= φ

(
xρ,g2β

σg2

)∫ ∞
−xρ,g1β

(a+ bσg1u)
1√
2π

exp

{
−1

2

(uσg2 + xρ,g2βσg1,g2/σg1σg2)

|Σg|/σ2
g1

}
du

= φ

(
xρ,g2β

σg2

)∫ ∞
−ϕ1,g(xρ,g2β)

|Σg|1/2

σg1σg2

[
a+ bσg1

(
|Σg|1/2

σg1σg2
v − xρ,g2β

σg2

σg1,g2
σg1σg2

)]
φ(v)dv

we get

C =
|Σ|3/2bσg1
σ2
g1σ

2
g2

f(xρ,g1β,xρ,g2β) +
|Σ|1/2

σg1σg2

(
a− bσg1

xρ,g2β

σg2

σg1,g2
σg1σg2

)
φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β)) .

Finally, by putting all terms together and after some tedious calculations, we get

∂pg(1, 1)

∂ρ
=
f(xρ,g1β,xρ,g2β)

2

(
2σ̇g1,g2 − σ̇2

g1

σg1,g2
σ2
g1

− σ̇2
g2

σg1,g2
σ2
g2

)
+ φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β))

(
ẋg1β

σg1
−

σ̇2
g1

2σ2
g1

xρ,g1β

σg1

)

+ φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β))

(
ẋg2β

σg2
−

σ̇2
g2

2σ2
g2

xρ,g2β

σg2

) (E.12)

Similar steps lead to,

∂pg(0, 1)

∂ρ
= −f(xρ,g1β,xρ,g2β)

2

(
2σ̇g1,g2 − σ̇2

g1

σg1,g2
σ2
g1

− σ̇2
g2

σg1,g2
σ2
g2

)
− φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β))

(
ẋg1β

σg1
−

σ̇2
g1

2σ2
g1

xρ,g1β

σg1

)

+ φ

(
xρ,g2β

σg2

)
(1− Φ (ϕ1,g(−xρ,g2β)))

(
ẋg2β

σg2
−

σ̇2
g2

2σ2
g2

xρ,g2β

σg2

) (E.13)
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∂pg(1, 0)

∂ρ
=

∂

∂ρ

{
Φ

(
xρ,g1β

σg1

)
− pg(1, 1)

}
= −f(xρ,g1β,xρ,g2β)

2

(
2σ̇g1,g2 − σ̇2

g1

σg1,g2
σ2
g1

− σ̇2
g2

σg1,g2
σ2
g2

)
+ φ

(
xρ,g1β

σg1

)
(1− Φ (ϕ2,g(−xρ,g1β)))

(
ẋg1β

σg1
−

σ̇2
g1

2σ2
g1

xρ,g1β

σg1

)

− φ
(

xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β))

(
ẋg2β

σg2
−

σ̇2
g2

2σ2
g2

xρ,g2β

σg2

)
(E.14)

∂pg(0, 0)

∂ρ
=

∂

∂ρ

(
1− Φ

(
xρ,g1β

σg1

))
− ∂

∂ρ
pg(0, 1)

=
f(xρ,g1β,xρ,g2β)

2

(
2σ̇g1,g2 − σ̇2

g1

σg1,g2
σ2
g1

− σ̇2
g2

σg1,g2
σ2
g2

)
− φ

(
xρ,g1β

σg1

)
(1− Φ (ϕ2,g(−xρ,g1β)))

(
ẋg1β

σg1
−

σ̇2
g1

2σ2
g1

xρ,g1β

σg1

)

− φ
(

xρ,g2β

σg2

)
(1− Φ (ϕ1,g(−xρ,g2β)))

(
ẋg2β

σg2
−

σ̇2
g2

2σ2
g2

xρ,g2β

σg2

)
(E.15)

Appendix E.2. SARAR(1,1)–probit

In the SARAR(1,1) spcification, the probabilities pg(d1, d2) follow the same equations (??) as in the SAR(1)

case. However, when computing all the quantities in (??), one has to bear in mind that the components

σ2
g1 , σ

2
g2 , σg1,g2 now depend on both ρ and λ through the variance covariance matrix:

Σ = (I− ρW)−1(I− λM)−1(I− λM′)−1(I− ρW′)−1. (E.16)

Thus, also in computing the derivatives of each pg(d1, d2) the simultaneous dependence of Σ = Σν(ρ,λ) on

ρ and λ has to be considered. This, however, does not in general alter the structure of the derivatives with

respect to β and to ρ.

It is in fact easy to see that ∂pg(d1, d2)/∂β follows (E.2), (E.3), (E.4) and (E.5). Similarly, ∂pg(d1, d2)/∂ρ

follows equations (E.12), (E.14), (E.13) and (E.15).

Note moreover that, by writing

∂Σ

∂ρ
=

∂

∂ρ

(
A−1
ρ B−1

λ (B−1
λ )′(A−1

ρ )′
)

= A−1
ρ WA−1

ρ B−1
λ (B−1

λ )′(A−1
ρ )′ + A−1

ρ B−1
λ (B−1

λ )′(A−1
ρ )′W′(A−1

ρ )′

= A−1
ρ WΣ + ΣW′(A−1

ρ )′

we can use the same equation as in the right-had-side of (E.7) to compute all the components of Σ̇ρ.

We now focus on the derivative Σ̇λ = ∂Σ/∂λ:

Σ̇λ = A−1
ρ B−1

λ MB−1
λ (B−1

λ )′(A−1
ρ )′ + A−1

ρ B−1
λ (B−1

λ )′M′(B−1
λ )′(A−1

ρ )′

= A−1
ρ B−1

λ MAρΣ + ΣA′ρM
′(B−1

λ )′(A−1
ρ )′.

(E.17)
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Finally, using (E.17), we can compute the elements of Σ̇λ, namely σ̇2
g1(λ), σ̇2

g2(λ), σ̇g1,g2(λ) to be used in the

following derivatives ∂pg(d1, d2)/∂λ:

∂pg(1, 1)

∂λ
=

∫ ∞
−xρ,g1β

1

σg1
φ

(
u

σg1

)[(
u2

σ2
g1

− 1

)
σ̇2
g1(λ)

2σ2
g1

Φ (ϕ2,g(u)) + φ (ϕ2,g(u))
∂ϕ2,g(u)

∂λ

]
du

∂pg(1, 0)

∂λ
= −φ

(
xρ,g1β

σg1

)
σ̇2
g1(λ)xρ,g1β

2σ3
g1

− ∂pg(1, 1)

∂λ

∂pg(0, 1)

∂λ
=

∫ −xρ,g1β

−∞

1

σg1
φ

(
u

σg1

)[(
u2

σ2
g1

− 1

)
σ̇2
g1(λ)

2σ2
g1

Φ (ϕ2,g(u)) + φ (ϕ2,g(u))
∂ϕ2,g(u)

∂λ

]
du

∂pg(0, 0)

∂λ
= φ

(
xρ,g1β

σg1

)
σ̇2
g1(λ)xρ,g1β

2σ3
g1

− ∂pg(0, 1)

∂λ
,

(E.18)

with

∂ϕ2,g(u)

∂λ
=
σ̇g1,g2(λ)σ2

g1 − σg1,g2 σ̇
2
g1(λ)

σg1

√
σ2
g1σ

2
g2 − σ2

g1,g2

u−1

2

xρ,g2β + u
σg1,g2
σ2
g1(

σ2
g2 − σ2

g1,g2/σ
2
g1

)3/2
(
σ̇2
g2(λ)−

2σg1,g2 σ̇g1,g2(λ)σ2
g1 − σ

2
g1,g2 σ̇

2
g1(λ)

σ4
g1

)
.

Formulas in (E.18) can be simplified through integration, as for the other terms of the score. Some calculations

lead to a formula very similar to (E.12):

∂pg(1, 1)

∂λ
=
f(xρ,g1β,xρ,g2β)

2

(
2σ̇g1,g2(λ)− σ̇2

g1(λ)
σg1,g2
σ2
g1

− σ̇2
g2(λ)

σg1,g2
σ2
g2

)
− φ

(
xρ,g1β

σg1

)
Φ (ϕ2,g(−xρ,g1β))

σ̇2
g1(λ)

2σ2
g1

xρ,g1β

σg1
− φ

(
xρ,g2β

σg2

)
Φ (ϕ1,g(−xρ,g2β))

σ̇2
g2(λ)

2σ2
g2

xρ,g2β

σg2
(E.19)

The other derivatives can be easily derived adjusting equations (E.13)–(E.15) in the same way.

Appendix F. Technical Lemmas

Lemma Appendix F.1. Under Assumptions 1–7,

1

G

G∑
g=1

KL(fg||f̃g) ≤ (1 + ‖Xβ‖22) O
(
|τρ|2(q+1)

)
.

Lemma Appendix F.2. Under Assumptions 1–6, ∂`n(
ˆθ)

∂θ
= op(1).

Lemma Appendix F.3. Under Assumptions 1–6, fon any γ ∈ Rk, γ 6= 0,

sup
g≤G

max
i=1,2

‖Xρ,gX
′
ρ,g‖2φ(Xρ,giγ) <∞

Lemma Appendix F.4. Under Assumptions 1–6 and 8–10, for all θ ∈ Θ, and for all g = 1, . . . , G and

d1, d2 ∈ {0, 1}2, ∥∥∥∥∂2pg(d1, d2)

∂θ∂θ′

∥∥∥∥
2

<∞
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If further Assumption 5 holds, then ∥∥∥∥∥∂2`n(θ)

∂θ∂θ′
− ∂2 ˜̀

n(θ)

∂θ∂θ′

∥∥∥∥∥
2

= o(1)

Lemma Appendix F.5. Under Assumptions 1–6

∂`n(θ̃)

∂θ
=
∂ ˜̀
n(θ̃)

∂θ
+ op(1) = op(1)
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