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This paper deals with the problem of clustering dependent ob-

servations according to their underlying complex generating process.

Di Lascio and Giannerini (2012) introduced the CoClust, a cluster-

ing algorithm based on copula function that achieves the task but has

a high computational burden. Moreover, the CoClust automatically

allocates all the observations to the clusters; thus it cannot discard

potentially irrelevant observations. In this paper we introduce an im-

proved version of the CoClust that both overcomes these issues and

performs better in many respects. By means of a Monte Carlo study

we investigate the features of the algorithm we propose and show that

it improves consistently with respect to the old CoClust. The validity

of our proposal is also supported by applications to real data sets of

human breast tumor samples for which the algorithm provides a mean-

ingful biological interpretation. The new algorithm is implemented and

made available through an updated version of the R package CoClust.
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1 Introduction

Clustering is a useful exploratory technique as it groups similar objects, e.g.
observations or variables, together and makes it possible to identify poten-
tially meaningful relationships between them.

There is an extensive literature on clustering techniques in many di�erent
�elds of application. In the context of gene expression analysis, a cluster-
ing algorithm creates groups of genes, which are involved in the same or
in similar biological processes, or groups of biological samples of the same
kind. For example, Eisen et al (1998) were among the �rst to prove the use-
fulness of hierarchical clustering to reveal biologically meaningful patterns
in microarray data; also,Tamayo et al (1999) used self-organizing maps to
distinguish two di�erent types of acute leukemia. Nevertheless, it is gener-
ally recognized that such methods lack statistical rigour and some crucial
questions cannot be addressed, like the number of clusters and the kind of
dissimilarity/distance measure to be used in order to uncover di�erentially
expressed genes (Roverato and Di Lascio, 2011; Dortet-Bernadet and Wicker,
2008). The model-based clustering (MClust hereafter) approach (Fraley and
Raftery, 1998) is an alternative to distance-based algorithms. It assumes
that the data are generated by a mixture of probability distributions such
as multivariate normal. Yeung et al (2001) showed among the �rst that, in
general, the use of Gaussian mixture models performs well for clustering gene
expressions. However, the MClust only accounts for a linear dependence re-
lationship between objects so that it inherits all the limitations of the linear
correlation coe�cient as a dependence measure. First, zero correlation does
not imply independence. Given two random variables, say X and Y , zero
correlation only requires null covariance cov[X, Y ] = 0, whereas zero depen-
dence requires cov[φ1(X), φ2(Y )] = 0 for any functions φ1 and φ2. Second,
linear correlation is not de�ned for some heavy-tailed distributions whose
second moments do not exist, e.g., Student's t distribution with 1 or 2 de-
grees of freedom. Third, it is not invariant under strictly increasing nonlinear
transformations, and, fourth, attainable values of the correlation coe�cient
within the interval [−1,+1] depend upon their respective marginal distribu-
tions F1 and F2. Finally, the linear correlation coe�cient, being a pairwise
measure, cannot account for possible multivariate dependencies. These limi-
tations motivate the introduction of more meaningful dependence measures.
The copula function (Sklar, 1959) is a well-known multivariate tool for gen-
erating joint distributions with a variety of dependence structures. Hence,
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starting from the work of Di Lascio and Giannerini (2012), we propose a
clustering algorithm based on copula function which inherits some of the
advantages of a model-based approach and tries to overcome their disadvan-
tages. The method we discuss here is implemented in the updated version of
R package CoClust available on CRAN (Di Lascio and Giannerini, 2014).

The paper is organized as follows. In Section 2 we introduce the notation
used and the theoretical background. In Section 3, we present the copula-
based clustering algorithm and describe it in detail. The main novel features
of the CoClust are investigated in Section 4 by means of a simulation study.
In Section 5, we present an application on a real data set of biological sam-
ples of human breast cancer (Hedenfalk et al, 2001). Finally, in Section 6
conclusions and discussion are outlined.

2 Theoretical background

Copula function C(·) is a mathematical object de�ned in Sklar's theorem (Sklar,
1959). It has a nice probabilistic interpretation since it expresses any K-
dimensional joint distribution function F (·) as a combination of standard uni-
form margins F1, . . . , Fk, . . . , FK and the multivariate dependence structure
separately. Hence, any joint probability function can be split into the margins
and a copula, so that the latter only represents the `association' between vari-
ables. For continuous random variables, the copula density c(·) is related to
the density f(·) of the distribution F (·), through the well-known canonical
representation f(x1, . . . , xK) = c(F1(x1), . . . , FK(xK))

∏K
k=1 fk(xk). Hence,

the log�likelihood function of f(·) is composed of two positive terms as fol-
lows

l(θ) =
n∑
i=1

log c {F1 (X1i) , . . . , FK (XKi) ; θ}+
n∑
i=1

K∑
k=1

log fi (Xki)

so that estimation can be performed in two steps: i) identi�cation of the
marginal distributions and ii) selection of the appropriate copula function.
Clearly, it is possible to model the margins separately from the dependence
structure and to use any combination of estimation methods for univariate
distributions and copula models. Here we focus on the semi-parametric ver-
sion of the two�stage estimation method called inference for the margins (Joe
and Xu, 1996) where the empirical cumulative distribution functions are
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Table 1: De�nition of some classic single parameter copula functions with
corresponding range of the dependence parameter θ and its relation with
Kendall's τ . D1(x) denotes the �Debye� function 1/x

∫ x
0
t/(expt−1)dt.

Copula C(u, v; θ) Parameter range Kendall's τ

Clayton
[∑K

k=1 u
−θ
k −K + 1

]− 1
θ2 θ ∈ (0,∞) θ

θ+2

Frank − 1
θ2

ln
{

1 +
∏K
k=1(e−θ2uk−1)

(e−θ2−1)K−1

}
θ ∈ (0,∞) 1− 4

θ [1−D1(θ)]

Gaussian ΦG[Φ−1(u1),Φ−1(uK)] θ ∈ [−1, 1] 2
π arcsin(θ)

Gumbel e

[
−(

∑p
j=1− log uj)

1/θ
]

θ ∈ [1,∞) 1− 1
θ

used to model the margins without assumptions on their parametric form,
i.e. through the empirical cumulative distribution function F̂k (Xki) with
k = 1, . . . , K, and, the maximum likelihood is used to estimate the copula
parameter.

In the literature, many di�erent bivariate copula models are available (Nelsen,
2006; Trivedi and Zimmer, 2005) but in higher dimension the Elliptical and
the Archimedean families are mostly used. The families considered here are
de�ned in Table 1 and displayed in Figure 1. These make it possible to cover
a large set of multivariate features that include asymmetries and heavy tails.

The CoClust algorithm introduced in Di Lascio and Giannerini (2012)
creates clusters such that objects in a same cluster are independent, i.e.
realizations of the same univariate random variable, while objects belong-
ing to di�erent clusters are dependent, i.e. realizations of a copula model
taken as the data generating process (DGP hereafter). Here, a clustering
is represented by a multivariate probability model de�ned via copula whose
dimension K is the number of clusters; each cluster represents a (marginal)
univariate distribution function Fk(Xk) with k = 1, 2, . . . , K. The approach
can bee seen as an MClust in which the DGP is de�ned via copula and the
focus is on the inter-cluster dependence relationship. The main di�erence
with traditional MClust is that here we assume internal independence and
external dependence rather than internal similarity and external separation
(see Di Lascio and Giannerini (2012) for more details).

The connection between the copula-based clustering as a statistical object
and the clustering as a biological object is formalized as follows. The starting
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Figure 1: Contour plots of the four (bivariate) copula functions de�ned in
Table 1 with standard normal margins and a Kendall's τ coe�cient of 0.7.

point is a G× S data matrix
x11 . . . x1s . . . x1S
... . . .

... . . .
...

xg1 . . . xgs . . . xgS
... . . .

... . . .
...

xG1 . . . xGs . . . xGS

 =


x1
...
xg
...
xG

 (1)

where xg, g = 1, . . . , G is a row vector containing the expression level of the
gene g observed in S biological samples and is a single element to be allocated
to a cluster.

The CoClust algorithm allocates a k-plet of row vectors at a time and
the allocation of the i-th k-plet of genes, xg1i , . . . ,xgki , is performed on the
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basis of the log-likelihood of the copula �t:

lxg∗
11

... xg∗
k1

... ... ...
xg∗

1(i−1)
... xg∗

k(i−1)
xg

1i
... xg

ki

(
θ̂
)

= max
θ∈Θ

S∑
s=1

{
i−1∑
j=1

log c
[
F̂g∗1j

(
Xg∗1js

)
, . . . , F̂g∗kj

(
Xg∗kjs

)
; θ
]

+

log c
[
F̂g1i

(
Xg1is

)
, . . . , F̂gki

(
Xgkis

)
; θ
]}

(2)

where the asterisk in the subscripts indicates the genes already allocated to
the clusters.

3 CoClust: copula�based clustering algorithm

The CoClust assumes that the data are generated by a K-dimensional cop-
ula function whose arguments are the probability-integral transforms of the
density functions that generate the clusters. At the �rst step the algorithm
selects the number of clusters K; then, it evaluates the allocation of one
K-plet of observations at a time, i.e. one observation for each cluster. Re-
call that each observation is a S�dimensional vector and its components are
treated as (independent) realizations of the same random variable. The K
candidate observations are allocated to the K clusters on the basis of the
value of the maximized log�likelihood function of the copula model. Since
at each step we compare non�nested models, the criterion is equivalent to
the well�known Bayes information criterion (BIC) and Akaike information
criterion (AIC).

The CoClust produces a set of groups with a precise dependence struc-
ture: observations that belong to di�erent clusters are dependent through
the copula model. From the graph theory point of view, the �nal clustering
of the CoClust can be seen as a complete graph where each vertex indicates
a cluster of objects independent from each other, each edge indicates the
dependence relationship between each pair of clusters and the undirected
distinct vertices indicate the exchangeability of the dependence relationship.

As in Di Lascio and Giannerini (2012), there is no need to set a priori the
exact number of clusters K, nor is a starting classi�cation required because
the algorithm automatically selects the best number of clusters within a given
range of possibilities on the basis of the log-likelihood in eq. (2).
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One of the most crucial improvements of our proposal concerns the se-
lection of K in {2, 3, . . . , Kmax} where Kmax is speci�ed by the user. The
algorithm in Di Lascio and Giannerini (2012) chooses the number of clus-
ters K by estimating

∑Kmax

k=2 CG,k =
(
G
k

)
copula �ts. In our proposal only∑Kmax

k=2 Cnk,k =
(
nk
k

)
�ts are required, where nk � G. In practice we perform

the selection of the number of clusters K on a representative subset of nk
observations and this reduces greatly the computational burden. For more
details on the selection of the nk observations see Section 4.

At the generic i-th step, the algorithm in Di Lascio and Giannerini (2012)
selects the candidate k-plet that corresponds to the largest log-likelihood of
the copula among those computed on the set of

(
G−(i−1)k

k

)
combinations of

observations that have not been allocated yet. In the version we propose the
candidate k-plet is constructed on the basis of a function H(·) applied to the
row vectors of eq. (1) and de�ned as follows:

De�nition 1 Let Λ = {g1, . . . , gh} a set of genes such that Λ = Λ1 ∪ Λ2,

where Λ1 is the subset of genes already selected to compose a k-plet and Λ2 is

the set of remaining candidates to complete it. The function H(·) is de�ned

as follows

H(g1, . . . , gh) = max
g′∈Λ2

{
ψ

g∈Λ1

(cor(xg,xg′))

}
(3)

where xg is the expression level of the gene g, cor is the Spearman's correlation

coe�cient and ψ is a convenient function among the mean, the median or

the maximum.

The function H(·) is a sort of multivariate measure of dependence based on
the pairwise Spearman's correlations. When the clustering concerns biolog-
ical samples, then the function H(·) is applied to the column vectors of the
data matrix in eq. (1).

Di�erently from Di Lascio and Giannerini (2012), it is now possible to
discard irrelevant objects since the permutation of the selected k-plet is al-
located if and only if it increases the likelihood of the copula �t in eq. (2);
otherwise, it is discarded since, possibly, either it is independent from the
identi�ed DGP or it comes from another DGP.

In the following we describe the procedure of the improved CoClust. The
data are organized in a G×S matrix like in eq. (1). Let C be a copula model
and lC(·) the associated log-likelihood function and, further, de�ne as Ψ[A]
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Algorithm 1 Copula-based clustering algorithm (Part 1)

Input: G × S data matrix, copula model C(·), estimation method for
copula and margins, a selection criterion (e.g. BIC ), [Kmin,Kmax] range
for the number of clusters, dimension nk of the initial subset of rows used
to select K, the function ψ in eq. (3) (max, mean or median).
Output: Matrix of the clustered data withK columns, estimated copula
model, log-likelihood of copula �t.

1: Compute the Spearman's correlation matrix between observations xg,xg′ :
cor(g, g′) with g 6= g′, and g, g′ ∈ {1, . . . , G}

2: for k = Kmin, . . . , Kmax do

3: set i = 1
4: while (i ≤ nk) do
5: if i = 1 then

6: allocatedi−1 = ∅
7: else

8: allocatedi−1 = {1, . . . , G}\{(g11, . . . , gk1), . . . , (g1(i−1), . . . , gk(i−1))};
9: select (g1i, g2i) = arg max{1,...,G}\allocatedi−1

cor(g, g′);
10: set j = 2;
11: end if

12: while (j < k) do
13: set Λ = ({g1i, . . . , gji})∪ ({1, . . . , G} \ allocatedi−1 \ {g1i, . . . , gji});
14: compute H(Λ) and obtain g(j+1)i;
15: j = j + 1;
16: end while

17: set candidatei = (g1i, . . . , gki)
18: if i = 1 then

19: allocatedi = candidatei;
20: i = i+ 1;
21: else

22: if maxΨ[candidatei] lC(allocatedi−1 ∪ candidatei) ≥ lC(allocatedi−1)

then

23: allocated= arg maxΨ[candidate] lC(allocatedi−1 ∪ candidatei);
24: allocatedi = allocatedi−1∪ allocated
25: i = i+ 1;
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Algorithm 1 Copula-based clustering algorithm (Part 2)

26: else

27: reject the candidate
28: end if

29: end if

30: end while

31: Compute the selection criterion BICk for C on the nk allocated k-plets
32: end for

33: K = arg maxk BICk
34: set k = K
35: for i = (nK + 1), . . . , G/K do

36: repeat steps 5�29
37: end for

the set of permutations of the elements of the set A. The detailed procedure
of the algorithm is shown in the box Algorithm 1.

Note that the choice of the copula model is left to the user as the modelling
step always requires a careful assessment. We argue that for a clustering
exercise to be robust, the results should be insensitive to the choice of similar
models, provided they are appropriate for the case under scrutiny. Copula
models with a single dependence parameter can be thought of as non-nested
models (except the case of Gaussian copula with unstructured covariance
matrix). Hence, as suggested by Zimmer and Trivedi (2006), one approach
for choosing among copula models is to use either the AIC or BIC. In our case,
AIC= −2l(θ̂) + 2 is equivalent to the maximized log-likelihood of the copula
since the number of parameters is always 1 (single-parameter copulas and
nonparametric estimation of the margins). On the contrary, BIC= −2l(θ̂) +
log(n), where n is the total number of allocated observations, is useful when
the selected number of clusters varies among copula models.

3.1 A toy example

Here we present an example of the CoClust algorithm that should help clar-
ifying its logic. Suppose we have a G × S data matrix as in eq. (1) where
G = 9. Given a copula model C(·), a given number of clusters K = 3 and
nK = 2, we

1. compute the Spearman's correlation matrix;

9



2. since i = 1 ≤ nK = 2, the �rst pair of rows is selected among the(
9
2

)
= 36 available: (g11, g21) = arg max{1,2,...,9} cor(g, g′), say (x1,x3);

3. since j = 2 < K = 3, the triplet is completed by selecting the third
row on the basis of the H(·) function in eq. (3) where Λ = {1, . . . , 9},
Λ1 = {1, 3} and Λ2 = {2, 4, . . . , 9}:

H ({1, 3} ∪ {2, 4, 5, 6, 7, 8, 9}) = max



ψ(cor(x1,x2))
ψ(cor(x1,x4))

...
ψ(cor(x1,x9))
ψ(cor(x3,x2))

...
ψ(cor(x3,x9))


and (g11, g21, g31) = argH(1, . . . , G); say that the �rst selected triplet
is (x1,x3,x4);

4. j = j + 1 = 3 ≮ K = 3, hence the triplet candidate is (x1,x3,x4);
since i = 1, the candidate is allocated to the 3 clusters obtaining the
following initial classi�cation: C1 = x1, C2 = x3, C3 = x4; next, i is
updated to i+ 1 = 2;

5. the procedure is repeated from step 5. to step 21. one time: i = 2 ≤
nK = 2, a second doublet is selected: (g12, g22) = arg max{2,5,6,...,9} cor(g, g′),
say (x2,x6);

6. j = 2 < K = 3, the triplet is completed by selecting the third row on
the basis of the H(·) function in eq. (3), that is

H({2, 6} ∪ {4, 5, 7, 8, 9}) = max



ψ(cor(x2,x4))
...

ψ(cor(x2,x9))
ψ(cor(x6,x4))

...
ψ(cor(x6,x9))


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Table 2: Final clustering of the toy example.
C1 C2 C3

x1 x3 x4

x6 x2 x5

and (g12, g22, g32) = argH({2, 4, 5, 6, 7, 8, 9}); say that the second se-
lected triplet is (x2,x6,x5) and its is the candidate to the allocation
since j = j + 1 = 3 ≮ K = 3;

7. in order to choose whether either to allocate or to discard the second
triplet, the copula model is estimated through eq. (2) and according to
steps 19.-21. In practice, the following log-likelihood is computed

lxg∗11 ,xg∗21 ,xg∗31
xg12

,xg22
,xg32

(
θ̂
)

= lx1,x3,x4
x2,x6,x5

(
θ̂
)

(4)

by varying the permutation of the second triplet candidate to the
allocation; if the maximum value of the maximized loglikelihood is

greater than lxg∗11 ,xg∗21 ,xg∗31

(
θ̂
)
then the second triplet is allocated; say

that lC((x1,x6), (x3,x2), (x4,x5)) ≥ lC(x1,x3,x4), the classi�cation ob-
tained is C1 = (x1,x6), C2 = (x3,x2), C3 = (x4,x5) and i is updated
to i = 2;

8. now, steps 5.-21. are repeated; say that the third candidate triplet is
(x7,x8,x9) and that

max
Ψ[(x7,x8,x9)]

lC((x1,x3,x4) ∪ (x7,x8,x9)) � lC(x1,x3,x4)

then the third triplet is rejected. The �nal clustering is presented in
tab. 2 and the dependence relationship across clusters is estimated.

4 Simulation study

We investigate the performance of the CoClust through a large simulation
study where we explore the features of the new version of the CoClust and
compare it with that in Di Lascio and Giannerini (2012). The �rst part of the
simulation study focuses on the observations and k-plets correctly allocated.
In the second part we vary
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• the kind of function H: max, mean, and median;

• the number of clusters/dimension of the copula: from 2 to 5;

• the copula model: Archimedean family, Gaussian family.

Moreover, we study the capability of the CoClust to distinguish between
di�erent DGPs in the same data set and possibly dropping out irrelevant
observations. At this stage, we chose not to vary the sample size mainly
because the CoClust is designed to work with small samples. Also, high-
dimensional copula models, e.g. K > 10, are not easily tractable from the
computational point of view. Hence, in all the simulated examples the sample
size is set to n = 60. The number of Monte Carlo replications is 500 in all
the scenarios.

4.1 Performance measures

In order to evaluate the ability of an algorithm to detect objects that belong
to an underlying DGP or to exclude objects not belonging to it we use mea-
sures like sensitivity and positive predictive value, commonly employed for
diagnostic tests. Here, the sensitivity is the proportion of objects belonging
to the DGP that will be clustered; the positive predictive value is the propor-
tion of clustered objects that actually belong to the true DGP. From Table 3
we can compute the sensitivity with n11/n1· and the positive predictive value
with n11/n·1, since ni· with i = 1, 2 indicates the number of k-plets (or ob-
servations) to be allocated or discarded, while n·j with j = 1, 2 indicates the
number of k-plets (or observations) that the CoClust has correctly or incor-
rectly allocated or discarded. In summary, we use the following performance

Table 3: Confusion matrix of the clustering algorithm.

Allocated Discarded

k-plets (or obs.) k-plets (or obs.)

true DGP n11 n12 n1·

other DGP n21 n22 n2·

n·1 n·2 n

measures:
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1. p.n.c.: percentage of replications in which the identi�ed number of
clusters is correct;

2. SEN.k : sensitivity for k-plets; percentage of k-plets of objects belonging
to the true DGP that are correctly allocated;

3. SEN.o: sensitivity for observations; percentage of single objects be-
longing to the true DGP that are correctly allocated;

4. PPV.k : positive predictive value of k-plets; percentage of clustered
k-plets of objects that belong to the true DGP;

5. PPV.o: positive predictive value of observations; percentage of clus-
tered objects that belong to the true DGP.

4.2 Comparing the two versions of the CoClust algo-

rithm

The design of the simulation study follows that of Section 4 of Di Lascio and
Giannerini (2012) as to facilitate the comparison. Recall that here n = 30
and K = 3 for all the scenarios. Table 4 shows the results obtained by using
our proposal. The copula generating process is reported in the �rst column
and the margins are reported in the second column. Note that p.n.c. and
SEN.o coincide, respectively, with the measures p.n.c. and p.c.a in Di Lascio
and Giannerini (2012). By comparing the results in Table 4 with those

Table 4: CoClust performance: comparing our proposal with the CoClust
in Di Lascio and Giannerini (2012). The symbol ? indicates where the new
algorithm improves with respect to the old CoClust in Di Lascio and Gian-
nerini (2012).

Copula Margins p.n.c. SEN.k SEN.o PPV.k PPV.o

Frank copula Gamma, Beta, Gaussian 100? 99.50 99.83? 99.50 99.83

Skew�Normal Skew�Normal 92.50? 82.03 84.46 95.24 98.45

Mixed Gaussian Gaussian 71.25? 79.00 78.30? 84.25 94.47
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in tables 6, 7, 8 in Di Lascio and Giannerini (2012) we can see that the
new algorithm overcomes the previous version. The performance gain is
considerable when the data come from a mixture of Gaussian distributions.
In general, the obtained results for all the performance measures employed
are very satisfactory in all the three scenarios.

4.3 Understanding the ability of the CoClust

In this section we investigate the features of the new CoClust algorithm.
In the �rst scenario we simulate from a Skew�Normal DGP by varying the
number of clusters K in (2, 3, 4, 5) and the function ψ in eq. (3). We use
a Gumbel copula when K = 2 and a Clayton copula when K = 3, 4, 5, the
correlation between any pair of margins is set to 0.7, the mean vector is set
to (4, 6), (4, 6, 7), (2, 4, 6, 7) and (3, 5, 7, 9, 11), respectively for each value of
K from 2 to 5. Table 5 shows the results. As for the correct number of

Table 5: CoClust performance: Skew-Normal DGP for K = 2, . . . , 5 and the
function ψ in eq. (3).

K ψ p.n.c. SEN.k SEN.o PPV.k PPV.o

2

max 80.80 81.53 83.82 97.17 99.99

mean 86.60 81.62 83.90 97.19 99.99

median 92.00 81.83 84.13 97.16 99.99

3

max 82.40 69.77 76.00 89.28 97.40

mean 80.20 73.60 79.31 90.63 97.77

median 84.80 73.76 79.26 90.96 97.87

4

max 95.80 84.48 88.17 93.90 98.22

mean 96.80 89.02 91.91 95.51 98.78

median 96.40 87.00 90.32 94.86 98.67

5

max 84.40 71.33 80.26 82.15 92.54

mean 85.80 78.92 85.45 86.38 93.89

median 84.00 77.24 84.44 85.50 93.78

clusters (p.n.c.), the performance of the CoClust is satisfying since all the

14



percentages are well above 80%; note that the function ψ has some impact
on the identi�cation of the true value of K: when the number of clusters
is low, i.e. K ≤ 3, the median outperforms the maximum and the mean,
while when K ≥ 4, the mean function is slightly better. On the one side,
the algorithm appears to be quite sensitive: in the worst case it discards (or
incorrectly allocates) less than three k-plets over ten. On the other side, the
accuracy of the algorithm is very high: in almost all the scenarios it is greater
than 90%. This means that the improved CoClust correctly composes and
allocates almost all the k-plets (objects) to the �nal clustering.

Table 6: CoClust performance: trivariate Skew-Normal DGP plus 15% of
independent observations.

Copula ψ p.n.c. SEN.k SEN.o PPV.k PPV.o

max 83.00 68.39 72.09 76.71 81.12

Gaussian mean 83.00 70.93 74.59 77.62 81.86

median 85.40 71.26 74.85 77.78 81.91

max 83.80 68.26 73.05 73.70 79.09

Frank mean 83.40 70.76 75.47 74.60 79.78

median 86.40 70.91 75.60 74.61 79.73

max 80.80 68.21 72.80 73.78 78.98

Gumbel mean 83.80 70.76 75.45 74.63 79.77

median 85.20 70.93 75.58 74.65 79.73

max 78 67.92 72.66 77.47 83.18

Clayton mean 77.2 70.68 75.25 78.36 83.69

median 81.8 70.69 75.20 78.33 83.58

In Table 6 we show the results for a trivariate Skew-Normal DGP plus
15% of independent observations. The results con�rm that the median is
the best aggregating function when K = 3. As for the sensitivity and the
positive predictive value, we may argue that also in this set of scenarios the
�nal clustering is more precise than sensitive: the clustering is `clean' since
few k-plets are incorrectly allocated, but a bit incomplete in that some �good�
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k-plets are discarded. Finally, the kind of copula model used in the algorithm
does not have a strong impact on the performance of the CoClust.

In Table 7 we show the case of two competing trivariate DGPs, a Skew-
Normal DGP with correlation 0.7 and a Clayton copula DGP with θ = 2
(Kendall's correlation is τ = 0.5). Here we assess the capability of the
CoClust to recognize and allocate the observations coming from the Skew-
normal distribution. Also in this last scenario the CoClust has a high per-
centage of correctly identi�ed number of clusters (it varies between 85% and
90%), irrespectively of the kind of copula model and the function ψ. More-
over, about 75% of the k-plets and 80% of the observations are correctly
allocated to the clusters so that the �nal clustering is fairly complete. On
the contrary, the PPV is not very high as the �nal clustering contains about
50% of k-plets that not belong to the Skew-normal distribution. This result
is somehow expected since both the Clayton and the Skew-normal are heavy
tailed on the left. In this scenarios the CoClust is more sensitive than precise

Table 7: CoClust performance: two trivariate data generating processes
(Clayton copula and Skew-normal).

Copula ψ p.n.c. SEN.k SEN.o PPV.k PPV.o

Max 84.4 72.61 77.97 43.68 47.01

Gaussian Mean 86.6 74.64 79.68 43.99 47.04

Median 86.6 75.24 80.18 44.20 47.21

Max 77.2 72.88 79.64 43.25 47.38

Frank Mean 80.0 75.28 82.00 43.32 47.28

Median 84.4 75.21 81.92 43.37 47.32

Max 79.4 71.31 74.85 42.36 44.58

Gumbel Mean 82.2 74.16 77.42 42.99 44.97

Median 84.8 74.41 77.61 43.07 45.01

Max 86.2 72.65 81.89 44.08 49.74

Clayton Mean 89.2 74.82 83.44 44.58 49.76

Median 90.4 74.76 83.43 44.54 49.74
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so that the obtained clustering is complete but �dirty�. Finally, in all the
performed simulations the number nk of k-plets used to select the number
of clusters K has been set to 4. A small simulation study revealed that the
value for nk does not a�ect the performance of the algorithm. The R code
for the simulation experiment and the results that have not been reported
here are available upon request.

5 Real data analysis

We apply the CoClust to a data set that contains gene expression levels
observed in 21 human breast cancer biological samples with three di�erent
kinds of breast cancer mutation: BRCA1, BRCA2, and Sporadic (Hedenfalk
et al, 2001). We focus on the 51 genes whose variation in expression among
all experiments best di�erentiated among the three types of tumours. The
purpose is the identi�cation of the kind of mutation among the three, so the
CoClust is applied to the 21 biological samples. Accordingly to the simulation
study, we

• apply the CoClust to the whole dataset (three kinds of mutations);

• apply the CoClust to the three mutations groups separately. Moreover,
we add independent random observations and data from di�erent DGPs
(mutations) to the data set.

First, we apply the method to the whole data set of biological samples.
Table 8 shows the results: the CoClust identi�es correctly the number of
clusters (K = 7) and distinguishes perfectly the three mutations. Also it
uncovers the relationship among the samples with the same kind of biological
mutations. Of course, we do not know the true composition of the margins
and, consequently, we cannot evaluate them but we know the three kinds of
mutations and we see that the CoClust makes it possible to recognize them
all by looking at the results across clusters. The copula model selected on

the basis of the BIC is the Gaussian with θ̂ = 0.780 and SE
(
θ̂
)

= 0.028.

Now we work with a kind of mutation at a time. Table 9 shows that, for
each mutation, the CoClust is always able to recognize the correct number of
clusters and the true �nal clustering, also when we add a set of independent
observations (Indep. case) or a subset of biological samples with other kinds
of cancer mutations (Mix. case), except for the case of Sporadic cancer
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Table 8: Identi�cation of breast cancer mutations through CoClust.

C1 C2 C3 C4 C5 C6 C7

BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1 BRCA1

BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2 BRCA2

Spor Spor Spor Spor Spor Spor Spor

samples mixed with the other two kinds of mutations. In this case, the zero
value for the sensitivity and the positive predictive value is due to the fact
that the CoClust never identi�es the correct number of clusters (in 88% it
selects K = 9 and in the remaining 12% of cases it selects K = 8). This
result is very interesting: the CoClust is able to identify mutations in germ
cells, which occur in egg and sperm cells and can be passed on from a parent
to a child, rather than mutations occurring in somatic cells, which cannot
be inherited. For completeness, the copula model selected for all the three

data sets is Gaussian with θ̂ = 0.797 and SE
(
θ̂
)

= 0.048 for the samples

with BRCA1 mutation, θ̂ = 0.850 and SE
(
θ̂
)

= 0.040 for the sample with

BRCA2 mutation and θ̂ = 0.574 and SE
(
θ̂
)

= 0.071 for the samples with

Sporadic mutation.

6 Summary and Discussion

In this paper we have introduced an improved version of the CoClust algo-
rithm in Di Lascio and Giannerini (2012). The main innovative features are
(i) the capability to discard irrelevant observations, (ii) the use of a mul-
tivariate function of pairwise correlations to form the k-plets candidate to
the allocations, and (iii) the improvement in terms of computational com-
plexity. Also for the improved CoClust, the computational complexity is
governed by the �rst step of the algorithm but we pass from a complexity of∑Kmax

k=2

(
G
k

)
≤ (G + 1)

[
(G+ 1)k−1 − 1

]
≈ O

(
GKmax

)
, where G is the sample

size, to a complexity of
∑Kmax

k=2

(
nk
k

)
≤ (nk+1)

[
(nk + 1)k−1 − 1

]
≈ O

(
nKmax
k

)
,

where nk is a user de�ned constant that does not depend on the sample
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Table 9: Analysis of cancer mutations through CoClust.

Copula ψ p.n.c. SEN.k SEN.o PPV.k PPV.o

Whole 100 100 100 100 100

BRCA1 Indep. 100 100 100 100 100

Mix. 100 100 100 100 100

Whole 100 100 100 100 100

BRCA2 Indep. 100 100 100 100 100

Mix. 100 100 100 100 100

Whole 100 100 100 100 100

Sporadic Indep. 100 100 100 100 100

Mix. 0 0 0 0 0

size. The superiority of our proposal has been shown both theoretically and
empirically. Moreover, the algorithm has been implemented in an R pack-
age (Di Lascio and Giannerini, 2014) which is available on CRAN.

The algorithm can be extended in di�erent directions. First of all, the in-
troduction of an automatic selection copula model. As pointed out by Brech-
mann and Schepsmeier (2013), the tests proposed by Vuong (1989) and Clarke
(2007), which are essentially likelihood-ratio-based tests which measure the
distance between two statistical models, may be more reliable than informa-
tion criteria when non-nested models are compared. Second, the limitation
of equal sized clusters can be levied by resorting to copula-based imputation
methods, e.g. see Di Lascio et al (2015). Third, an investigation of the per-
formance of the CoClust with non exchangeable copulas and rotated copulas
could be useful for particular contexts or empirical applications. Another
important point concerns the introduction of an ad hoc validation measure
for measuring the goodness of a clustering; one could de�ne a copula-based
silhouette index or borrow a measure from graph theory.

19



Acknowledgements

F. Marta L. Di Lascio acknowledges the support of Free University of Bozen-
Bolzano, Faculty of Economics and Management, via the project �Multivari-
ate analysis techniques based on copula function�.

References

Brechmann E, Schepsmeier U (2013) Modeling dependence with c- and d-vine
copulas: The r package cdvine. Journal of Statistical Software 52(3):1�27

Clarke K (2007) A simple distribution-free test for non-nested model selec-
tion. Political Analysis 15:347�363

Di Lascio F, Giannerini S (2012) A copula-based algorithm for discovering
patterns of dependent observations. Journal of Classi�cation 29(1):50�75

Di Lascio F, Giannerini S (2014) CoClust. R package version 0.3-1

Di Lascio F, Giannerini S, Reale A (2015) Exploring copulas for the im-
putation of complex dependent data. Statistical Methods & Applications
24(1):159�175

Dortet-Bernadet JL, Wicker N (2008) Model-based clustering on the unit
sphere with an illustration using gene expression pro�les. Biostatistics
9(1):66�80

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and
display of genome�wide expression patterns. Proceedings of the National
Academy of Sciences 95:14,863�14,868

Fraley C, Raftery A (1998) How many clusters? which clustering
method? answers via model�based cluster analysis. The Computer Journal
41(8):578�588

Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer
P, Gusterson B, Esteller M, kallioniemi OP, Wilfond B, Borg A, Dougherty
E, Kononen J, Bubendorf L, Fehrle W, Pittaluga S, Gruvberger S, Lo-
man N, Johannsson O, Olsson H, Sauter G (2001) Gene�expression pro-
�les in hereditary breast cancer. The New England Journal of Medicine
344(8):539�548

20



Joe H, Xu J (1996) The estimation method of inference functions for margins
for multivariate models. Technical Report 166, Department of Statistics,
University of British Columbia

Nelsen RB (2006) Introduction to copulas. Springer, New York

Roverato A, Di Lascio F (2011) Wilks' λ dissimilarity measures for gene clus-
tering: An approach based on the identi�cation of transcription modules.
Biometrics 67(4)

Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ
Inst Statist Univ Paris 8:229�231

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E,
Lander E, Golub T (1999) Interpreting patterns of gene expression with
self�organizing maps: methods and application to hematopoietic di�er-
entiation. National Academy of Sciences of the United States of America
(PNAS) 96:2907�2912

Trivedi PK, Zimmer DM (2005) Copula Modeling: An Introduction for Prac-
titioners, vol 1. Foundations and Trends in Econometrics

Vuong Q (1989) Likelihood ratio tests formodel selection and non-nested
hypotheses. Econometrica 57:307�333

Yeung K, Fraley C, Murua A, Raftery A, Ruzzo W (2001) Model-based clus-
tering and data transformations for gene expression data. Bioinformatics
17(10):977�987

Zimmer DM, Trivedi PK (2006) Using trivariate copulas to model sample
selection and treatment e�ects: Application to family health care demand.
J Bus Econ Stat 24:63�76

21


	Slide Number 1

