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Abstract

This paper presents the R package PanelTM, which provides tools for
estimating two- and three-way dynamic panel threshold regression models.
Estimation is performed using a generalized method of moments approach
based on first-difference transformations and instrumental variables as
developed by Seo and Shin (2016) and applied in a three-way fashion
by Di Lascio and Perazzini (2024, 2022). In addition to model estimation,
PanelTM offers functionalities for change point detection, simulation and
performance evaluation within panel structures with regime switches. The
package is particularly suited to applications requiring the identification of
structural breaks in complex panel data, with support for both exogenous
and endogenous variables and for threshold heterogeneity across multiple
dimensions.
Keywords: Generalized method of moments, panel data, threshold model,
R
JEL Code: C87, C13, C23, L66

1 Introduction
Threshold regression models for panel data have attracted growing interest due
to their ability to detect structural breaks and to capture asymmetric effects of
explanatory variables relative to a threshold variable. These models are particu-
larly suited to identifying non-linear dynamics and regime-dependent behaviour
in complex datasets. Methodological progress in this area has ranged from early
self-exciting threshold autoregressive models (Tong, 1990; Hansen, 2000) to the
more recent dynamic panel threshold models with endogenous transition vari-
ables proposed by Seo and Shin (2016). Despite these developments, software
tools for estimating threshold models in panel data remain relatively scarce, es-
pecially when compared to the broad range of packages available for time series
and cross-sectional data.

∗Faculty of Economics and Management, Free University of Bozen-Bolzano, Piazza Uni-
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Among existing software, R stands out for its extensive list of packages tai-
lored to panel data analysis. The most widely used is plm (Croissant and Millo,
2008), which provides a comprehensive framework for estimating static and dy-
namic panel models. Additional packages include OrthoPanels (Cubranic et al.,
2022), which implements the orthogonal reparameterisation for dynamic models
by Lancaster (2002); pdynmc (Fritsch et al., 2021), for linear dynamic panel es-
timation; and panelr (Long, 2020), focused on general regression models with
panel structures. While not specific to panel data, packages such as lme4 (Bates
et al., 2015) also offer tools applicable to panel-like structures through multilevel
modelling. Nevertheless, none of these packages support threshold regression,
with the exception of pdR (Tsung-wu, 2024), which estimates the non-dynamic
panel threshold model of Hansen (1999). Classical threshold models of this
kind assume static specifications and homogeneity in threshold effects. By con-
trast, more recent approaches, such as Seo and Shin (2016), allow for endoge-
nous thresholds and dynamic elements, enabling the analysis of both temporal
and cross-sectional heterogeneity. An implementation of Seo and Shin (2016)’s
method is available in STATA via the xthenreg command (Seo et al., 2019),
which performs first-differenced (FD) Generalized Method of Moments (GMM)
estimation for dynamic panel threshold models. While this implementation is
useful, it is limited to two-dimensional panel structures and does not accommo-
date three-way panel data. Moreover, STATA is proprietary software, which may
limit accessibility for researchers operating in open-source environments.

The R package PanelTM addresses the aforementioned limitations by provid-
ing a flexible framework for estimating dynamic panel threshold models, sup-
porting both two-way and three-way data structures. The inclusion of three-way
panels constitutes a novel contribution. To date, no existing threshold regression
framework allows for panel data with three dimensions in which the threshold
parameters are not assumed to be common across all time series, despite the
growing interest in multi-dimensional panel models (see, e.g., Mátyás, 1997,
2017; Balazsi et al., 2018). The core methodology implemented in PanelTM
builds on the FD-GMM estimator introduced by Seo and Shin (2016) and its
adaptation to three-way panels by Di Lascio and Perazzini (2024), which is rele-
vant in applications where threshold effects may differ along a third dimension.
The package allows for time-varying regressors (either exogenous or endoge-
nous), lagged dependent variables as transition variables, and, for three-way
panels, a threshold parameter that varies across the third dimension of the data
structure. This provides researchers with a powerful and versatile tool to de-
tect and interpret structural breaks in panel data, especially when traditional
methods are either infeasible or misspecified due to restrictive assumptions on
threshold homogeneity or exogeneity. In addition to panel regression, the pack-
age offers an easy tool to identify the change point in the time series based on the
threshold variable. The reference literature is very extensive (see e.g. Horvàth
and Huškovà, 2012; Chan et al., 2013; Cho, 2016) but, to the best of our knowl-
edge, there is still a gap for change point detection in three-way panel data with
temporal dynamics and thresholds varying across time series.

In this paper, we present the theoretical foundations and computational im-
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plementation of the PanelTM R package. Section 2 introduces the model speci-
fication, the GMM estimation procedure, the associated asymptotic properties,
the testing procedure for threshold effects, and the criteria for change point
identification. The finite sample performance of the estimator is then assessed
through an extensive Monte Carlo simulation study. Section 3 describes the
main features and functionalities of the package. Section 4 illustrates its practi-
cal use and potential applications through two examples: a case study on fruit
bioimpedance and a simulation exercise. Section 5 concludes the paper.

2 Methods
The package provides estimation routines for two classes of dynamic panel
threshold models: a two-way specification, implemented via the function ptm2,
and a three-way extension, implemented via ptm3. The two-way model corre-
sponds to the formulation introduced by Seo and Shin (2016), while the three-
way model builds upon this framework, as developed by Di Lascio and Perazzini
(2024). Here, we focus on the three-way model, noting that the third-way levels
are assumed independent so that the two-way model is a special case where the
third dimension is degenerate, i.e. J = 1. The following subsections present, in
order: the model specification, the estimation strategy, the asymptotic theory,
the test for threshold effects, the criteria for change point identification, and a
Monte Carlo simulation study to show its performance.

2.1 Model
Let i = 1, . . . , n denote statistical units, t = 1, . . . , T time periods, and j =
1, . . . , J levels of a third dimension. The three-way dynamic panel threshold
model is:

yijt = (1,x′
ijt)ϕ1j 1 {qijt ≤ γj} + (1,x′

ijt)ϕ2j 1 {qijt > γj} + εijt,

(1)
εijt = µi + λj + νijt,

where yijt be the dependent variable, qijt is the threshold variable, and xijt

is a vector of k1 time-varying covariates, which may include lagged values of
yijt. The coefficient vectors ϕ1j and ϕ2j represent regime-specific intercepts
and slopes, while γj is a threshold parameter specific to each j. 1{·} is the
indicator function for the regime switch based on the threshold variable qijt.
The error term is composed by µi, which captures individual fixed effects, and
λj , which accounts for third-way fixed effects, and the idiosyncratic error νijt

satisfying E(νijt | Ft−1) = 0, with {Ft} denoting the natural filtration. Thus,
νijt is a martingale difference sequence.
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2.2 Estimation
The ptm3 function estimates the model in Eq. (1) using the two-step FD-GMM
described in Di Lascio and Perazzini (2024), Sect. 3, and based on the contri-
bution by Seo and Shin (2016). The estimation procedure can be summarized
as follows.

Let us consider the first-differentiated model

∆yijt = yijt − yij(t−1) = β′
j∆xijt + δ′

jX ′
ijt1ijt(γj) + ∆εijt

where ∆ is the first difference operator, βj =
(
ϕ

(2)
1j , . . . , ϕ

(k1+1)
1j

)′
, δj = (ϕ2j −

ϕ1j),

Xijt =
( (

1,x′
ijt

)(
1,x′

ij(t−1)

) ) , 1ijt(γj) =
(

1{qij(t) > γj}
−1{qij(t−1) > γj}

)
,

and ∆εijt = εijt − εij(t−1) = νijt − νij(t−1). Therefore, θj = (β′
j , δ

′
j , γj)′ is the

(2k1 + 2)-dimensional vector of parameters to estimate for each level j. In the
first step, the GMM estimator of βj and δj for a fixed γj is defined through a
grid search algorithm by exploiting l instrumental variables; the GMM estimator
of γj is then obtained by exploiting the estimate

(
β̂j(γj), δ̂j(γj)

)
as follows

γ̂j = arg min
γj∈Γj

Ĵ(j)
n (γj)

where Ĵ(j)
n (γj) denotes the objective function evaluated at β̂j(γj) and δ̂j(γj),

given by Ĵ(j)
n (γj) = g(j)

n (γj)′W(j)
n g(j)

n (γj), and the (l × 1) vector of sample
moment conditions is defined as follows

ḡ(j)
n (γj) = ḡ

(j)
1n − ḡ

(j)
2n (γj)

(
β̂j(γj)′, δ̂j(γj)′

)′

= 1
n

n∑
i=1

g
(j)
1i − 1

n

n∑
i=1

g
(j)
2i (γj)

(
β̂j(γj)′, δ̂j(γj)′

)′

and W
(j)
n is a (l × l) weight matrix whose form can be specified in different

ways, e.g. W
(j)
n = Il (see Seo and Shin (2016) for additional details). The

first-step GMM parameters estimates are then (β̂′
j , δ̂

′
j , γ̂j)′ where (β̂′

j , δ̂
′
j)′ =

(β̂j(γ̂j)′, δ̂j(γ̂j)′)′.
The second-step GMM estimators are given by the procedure based on the

grid search algorithm described above, updated by exploiting the first-step es-
timates. Therefore, the (final) GMM estimator of θj , which is θ̂j , is obtained
as follows

θ̂j = arg min
θj∈Θj

Ĵ(j)
n (θj)

where
Ĵ(j)

n (θj) = g(j)
n (θj)′W(j)

n g(j)
n (θj) (2)
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with W(j)
n =

(
1
n

∑n
i=1 ĝ

(j)
i (θj)ĝ(j)′

i (θj) − 1
n2

∑n
i=1 ĝ

(j)
i (θj)

∑n
i=1 ĝ

(j)′
i (θj)

)−1
,

ĝ
(j)
i (θj) =


zijt0

(
∆yijt0 − β̂′

j∆xijt0 − δ̂′
jX ′

ijt0
1ijt0(γ̂j)

)
...

zijT

(
∆yijT − β̂′

j∆xijt0 − δ̂′
jX ′

ijT1ijT (γ̂j)
)


=
(

∆̂εijtz
′
ijt0

, . . . , ∆̂εijtz
′
ijT

)
,

and ∆̂εijt are the residuals obtained from the first-step estimation. The estima-
tion procedure described is repeated for each value of j to obtain the FD-GMM
estimates θ̂ of all the parameters in the three-way model introduced in Eq. (1)
of the manuscript.

As previously mentioned, the (lJ × lJ) weight matrix W is a diagonal block
matrix whose blocks on the diagonal are given by a (l × l) weight matrix W

(j)
n

concerning the j-th level. Therefore, the whole parameters vector θ is estimated
by applying the GMM estimator above described for each θj taken separately,
where j = 1, . . . , J . Specifically, the closed-form solution to produce GMM
estimates of the whole parameters vector θ̂ is in the diagonal of the following
matrix

Ĵ(θ) =


g

(1)
n (θ1)′ 0 . . . . . . 0

...
. . .

... . . .
...

0 . . . g
(j)
n (θj)′ . . . 0

... . . . . . .
. . .

...
0 . . . . . . 0 g

(J)
n (θJ )′




W(1)

n 0 . . . . . . 0
...

. . .
... . . .

...
0 . . . W(j)

n . . . 0
... . . . . . .

. . .
...

0 . . . . . . 0 W(J)
n




g
(1)
n (θ1) 0 . . . . . . 0

...
. . .

... . . .
...

0 . . . g
(j)
n (θj) . . . 0

... . . . . . .
. . .

...
0 . . . . . . . . . 0 g

(J)
n (θJ )

 =


Ĵ(1)

n (θ1) 0 . . . . . . 0
...

. . .
... . . .

...
0 . . . Ĵ(j)

n (θj) . . . 0
... . . . . . .

. . .
...

0 . . . . . . 0 Ĵ(J)
n (θJ )

(3)

where Ĵ(j)
n (θj) = g(j)

n (θj)′W(j)
n g(j)

n (θj) with j = 1, . . . , J . Hence,

θ̂ =
(

arg min
θ1∈Θ1

Ĵ(1)
n (θ1), . . . , arg min

θj∈Θj

Ĵ(j)
n (θj), . . . , arg min

θJ ∈ΘJ

Ĵ(J)
n (θJ)

)
(4)

where Ĵ(j)
n (θj) is as given in Eq. (2) and subsequent equations.

2.3 Asymptotic theory
The asymptotic properties of the GMM estimator based on the FD transforma-
tion were first developed by Hansen (2000). In the case of exogenous thresh-
old variables, asymptotic theory has been extensively studied in the context
of static panel models (Hansen, 1999). Separately, a rich literature addresses
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GMM estimation in linear dynamic panel models (see, e.g., Arellano and Bond,
1991; Blundell and Bond, 1998; Hsiao and Zhang, 2015). More recently, Seo
and Shin (2016) developed a comprehensive asymptotic framework for dynamic
panel threshold models. This includes consistent and efficient estimation of the
threshold parameter, as well as inference procedures for both threshold effects
and the endogeneity of the transition variable.

Since Eq. (1) assumes independence between the levels of the third way,
we estimate the model’s parameters for each level j of the third way taken
separately and, for each j, the standard GMM asymptotics as well as the FD-
GMM asymptotics are still valid. Thus, the standard GMM asymptotics and
the further development in Seo and Shin (2016) are also valid for the model in
Eq. (1), so we can state that, for each j, (i) the FD-GMM estimator always
follows a normal distribution asymptotically√

n

(
β̂j − βjn

δ̂j − δj0

)
n1/2−α(γ̂j − γj0)

 d−−−−→
n→∞

N
(
0, (G′

jΩ−1
j Gj)−1)

where the true value of βj is fixed at βj0 while that of δj depends on n such
that δjn = δj0n

−α for some 0 ≤ α < 1/2 and δj0 ̸= 0, Ωj is finite and positive
definite, Gj = (Gβj

,Gδj
(γj0),Gγj

(γj0)) is of full rank and it is composed of

Gβj
=

−E(zijt0∆x′
ijt0

)
...

−E(zijT ∆x′
ijT )

 , Gδj
(γj) =

−E(zijt01ijt0(γj)′xijt0)
...

−E(zijT1ijT (γj)′xijT )

 ,
and

Gγj
(γj) =

{Et0−1[zijt0(1ijt0−1,x
′
ij(t0−1))|γj ]pt0−1(γj) − Et0 [zijt0(1ijt0 ,x

′
ij(t0))|γj ]pt0(γj)}δ0j

...
{ET −1[zijT (1ijT −1,x

′
ij(T −1))|γj ]pT −1(γj) − ET [zijT (1ijT ,x

′
ijT )|γj ]pT (γj)}δ0j

 ,
where Et[·|γj ] denotes the conditional expectation given qijt = γj and pt(·) the
density of qijt assumed continuous and bounded, and Ωj can be obtained as
W

(j)−1
n .

2.4 Testing for threshold effect
An important issue related to the three-way panel threshold model in Eq. (1)
is to test whether there is a statistically significant regime switch in a sequence
of chronologically ordered data. Therefore, a bootstrap-based testing procedure
for the presence of the threshold effect was included in both ptm2 and ptm3
through the option test.lin=TRUE. The test is based on the work by Seo et al.
(2019) and is defined over the following hypothesis system for each j{

H0 : δj0 = 0, for any γj ∈ Γj

H1 : δj0 ̸= 0, for some γj ∈ Γj
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where Γj is the parametric space for γj . Using the standard approach based on
the supremum statistics

sup Wj = sup
γj∈Γj

Wn(γj)

where Wn(γj) = nδ̂j(γj)′Σ̂δj (γj)−1δ̂j(γj) is the standard Wald statistic for each
fixed γj ,

Σ̂δj
(γj) = R

((
Ω̂j(θ̂j(γj))−1/2(Ĝβj

, Ĝδj
(θ̂j(γj)))

)′ (
Ω̂j(θ̂j(γj))−1/2(Ĝβj

, Ĝδj
(θ̂j(γj)))

))−1
R′

that is a consistent asymptotic variance estimator with R = (0(k1+1)k1 , Ik1+1).
To compute the statistic test, a bootstrap procedure is used. Since boot-

strapping in dynamic panel models can be challenging, as discussed by Gong
and Seo (2024) who notably demonstrated that the nonparametric bootstrap
may be inconsistent, a parametric bootstrap was implemented instead. The
main idea is that the residuals ∆̂εijt from the original samples are used to com-
pute ∆y⋆

ijt = ∆̂ϵijtηi where ηi, with i = 1, . . . , n, are i.i.d. observations from
the standard normal; next, δ̂j(γj)⋆ and a bootstrap statistics W⋆

n(γj) are com-
puted to obtain sup W ⋆

j . The empirical p-values of the test are computed as
the proportion of suprema sup W ⋆

j (over Γj) in the bootstrap replications that
are larger than sup Wj . For firther details refers to Seo et al. (2019).

2.5 Change point identification
We define the change point as the regime switch time in two- or three-way
panel threshold regression models by applying the criteria outlined in Sect. 3.2
of Di Lascio and Perazzini (2024). From an applied perspective, this corresponds
to detecting the time point at which the series ij exceeds the estimated threshold
parameter γ̂j :

ĈPij = arg min
t∈{1,...,T }

{1(qijt > γ̂j)} , (5)

thus providing the time of regime change for each pair (i, j). It is important to
note that Eq. (5) becomes

ĈPij = arg min
t∈{1,...,T }

{1(qijt < γ̂j)}

when the upper regime occurs at the beginning of the time series. The last two
equations provide the time of the regime change for all i, j, i.e. for each time
series and level of the third-way, so that we next summarise the change points
over i through their mean indicated by CPj .

2.6 Monte Carlo simulation study
In this section, we explore the finite sample performance of the FD-GMM es-
timator described in Sect. 2.2. To this end, we perform a Monte Carlo study
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and investigate its performance in terms of bias and mean squared error of the
estimator for βj , δIj =

(
ϕ

(1)
2j − ϕ

(1)
1j

)
, δXj =

(
ϕ

(2)
2j − ϕ

(2)
1j

)
, γj , and CPj for

j = 1, . . . , J .
We consider the data-generating process as in Eq. (1), and distinguish two

cases: one without time-varying regressors and the other with time-varying
regressors. We assume that the error term is distributed as a Gaussian white
noise, that is εijt ∼ GWN (0, 1), ∀i = 1, . . . , n and ∀j = 1, . . . , J . As for the
model with time-varying regressors, we assume the regressor Xijt is distributed
as a stationary autoregressive model, AR(1), with coefficient equal to 0.7 ∀i =
1, . . . , n and ∀j = 1, . . . , J . We simulate different scenarios by varying sample
size n in (50, 150) and time series length T in (11, 50), for each level j. We
also vary the time-varying exogenous regressor coefficients and the threshold
parameter across the values of j (see specific parameter values in the scenarios
listed below). Moreover, when simulated time series are short, i.e. T = 11,
the true value used for the change point is CPij = 8, while, when T = 50,
CPij = 20, for all i = 1, . . . , n and j = 1, . . . , J . We thus simulate the following
scenarios:

1. Eq. (1) with J = 2 and without time-varying regressors:
yi1t = −1

{
yi1(t−1) ≤ 0

}
+ 1

{
yi1(t−1) > 0

}
+ εi1t

yi2t = −0.71
{
yi2(t−1) ≤ 0

}
+ 1.81

{
yi2(t−1) > 0

}
+ εi2t;

2. Eq. (1) with J = 2 and a time-varying regressor, and γ1 ̸= γ2 ̸= 0:
yi1t = (0.5 + 0.8xi1t)1

{
yi1(t−1) ≤ 3

}
+ (5 − 0.7xi1t)1

{
yi1(t−1) > 3

}
+ εi1t

yi2t = (5+1.2xi2t)1
{
yi2(t−1) ≤ 10

}
+(11+0.3xi2t)1

{
yi2(t−1) > 10

}
+εi2t;

3. Model as in the previous case but with CPi1 ̸= CPi2, CPi1 = 20, and
CPi2 = 30 ∀ i; for obvious reasons, here we only simulate the case with
T = 50;

4. Model as in scenario 2. but with CPi1 ̸= CPi2, CPi1 = 7, and CPi2 = 8
∀ i; for obvious reasons, here we only simulate the case with T = 11.

Further experiments were conducted to assess the performance of the model
when the two regimes are purely random processes. The results obtained are
consistent with those shown below and related to the aforementioned experi-
ments. They have thus been omitted here and are available upon request.

To assess the performance of the model and its estimation, we perform B =
500 replications for each scenario considered and compute the relative bias (RB)
and the relative root mean squared error (RRMSE) for the parameters of each
model and for the change point. The sample versions of RB and RRMSE are
as follows

R̂B = 1
B

B∑
b=1

(
ψ̂b − ψ

ψ

)
, ̂RRMSE =

√√√√ 1
B

B∑
b=1

(
ψ̂b − ψ

ψ

)2

(6)
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where ψ is one of the parameters in the model, i.e. βj , δIj , δXj , γj , CPj , and
ψ̂b is the corresponding estimated value at the b-th Monte Carlo replication.

Monte Carlo estimation results are shown in Tabs. from 1 to 4. Note that in
order to clearly show the results of the estimation accuracy of the intercept and
all coefficients of the model, we have indicated with δIj the difference between
the lower and upper regime’s intercept at the j-th level of the third way and with
δXj the difference between the lower and upper regime’s slope parameter for the
j-th level. Regarding the scenario 1. (results in Tab. 1), it appears that the
analysed model is able to find the true CP irrespective of the sample size and the
time series length, even though a slight worsening is present when n = T = 50.
As for the estimation accuracy of the model coefficients, the R̂B and the ̂RRMSE
of all the estimates show satisfactory values that further improve as n increases
and the length of time series decreases. Also for δIj and γj the worst case is
when n = T = 50, probably due to an excessively long time series w.r.t. the
sample size. Also in the scenario 2. (results in Tab. 2) the identified CPs are
very close to the true ones. As expected, all the model parameters show the best
performance when the sample size is large (n = 150). Finally, βj coefficients are
the only ones showing an accuracy that would merit further study. However,
the overall performance of the model is very satisfactory and the introduction
of a time-varying regressor does not show a negative impact on it. Finally, in
Tabs. (3) and (4) we present the Monte Carlo results for the two most general
cases where γ1 ̸= γ2 ̸= 0 and CPi1 ̸= CPi2 and the model includes a time-
varying regressor. These results confirm the satisfactory performance of the
model in terms of both estimation accuracy and change point detection.

Table 1: Simulation results scenario 1.: model in Eq. (1) with J = 2 and without
time-varying regressors. Note that ∗ indicates that a not relative version of the
measure is computed due to null denominator.

CP=8 CP=20
n = 50, T = 11 n = 50, T = 50

j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 δI1 2.0 0.213 0.548 1 δI1 2.0 -1.489 1.539
1 γ1 0 -0.219∗ 0.396∗ 1 γ1 0 0.241∗ 1.109∗

1 CP1 8 -0.049 0.092 1 CP1 20 0.254 0.481
2 δI2 2.5 0.091 0.516 2 δI2 2.5 -1.573 1.610
2 γ2 0 -0.201∗ 0.391∗ 2 γ2 0 0.531∗ 1.322∗

2 CP2 8 -0.055 0.101 2 CP2 20 0.226 0.448
n = 150, T = 11 n = 150, T = 50

j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 δI1 2.0 0.240 0.257 1 δI1 2.0 -0.380 0.428
1 γ1 0 -0.054∗ 0.089∗ 1 γ1 0 -0.540∗ 0.700∗

1 CP1 8 -0.012 0.020 1 CP1 20 -0.100 0.168
2 δI2 2.5 0.160 0.181 2 δI2 2.5 -0.482 0.528
2 γ2 0 -0.039∗ 0.063∗ 2 γ2 0 -0.472∗ 0.723∗

2 CP2 8 -0.012 0.019 2 CP2 20 -0.114 0.210
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Table 2: Simulation results for scenario 2.: model in Eq. (1) with J = 2, a
time-varying regressor, γ1 ̸= γ2 ̸= 0.

CP=8 CP=20
n = 50, T = 11 n = 50, T = 50

j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 0.583 1.372 1 β1 0.8 -0.685 1.212
1 δI1 4.5 -0.466 0.651 1 δI1 4.5 -1.680 1.702
1 δX1 -1.5 0.402 1.017 1 δX1 -1.5 -0.464 0.747
1 γ1 3 -0.432 0.549 1 γ1 3 0.221 0.668
1 CP1 8 -0.107 0.152 1 CP1 20 0.275 0.436
2 β2 1.2 0.171 1.173 2 β2 1.2 -0.508 0.651
2 δI2 6 -0.442 0.607 2 δI2 6 -1.315 1.331
2 δX2 -0.9 -0.022 2.419 2 δX2 -0.9 -0.661 0.898
2 γ2 10 -0.286 0.336 2 γ2 10 0.030 0.190
2 CP2 8 -0.120 0.171 2 CP2 20 0.427 0.527

n = 150, T = 11 n = 150, T = 50
j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 -0.121 0.276 1 β1 0.8 0.085 0.535
1 δI1 4.5 -0.086 0.132 1 δI1 4.5 -0.755 0.784
1 δX1 -1.5 -0.040 0.322 1 δX1 -1.5 0.021 0.310
1 γ1 3 -0.160 0.219 1 γ1 3 -0.266 0.408
1 CP1 8 -0.028 0.044 1 CP1 20 -0.048 0.129
2 β2 1.2 0.105 0.222 2 β2 1.2 -0.268 0.416
2 δI2 6 -0.058 0.086 2 δI2 6 -1.159 1.166
2 δX2 -0.9 0.121 0.644 2 δX2 -0.9 -0.380 0.596
2 γ2 10 -0.137 0.163 2 γ2 10 -0.057 0.230
2 CP2 8 -0.028 0.041 2 CP2 20 0.271 0.441

3 The PanelTM package
PanelTM provides two primary functions: ptm2 and ptm3, which are designed to
specify and estimate two-way and three-way panel models, respectively. These
functions differ in terms of input requirements: ptm2 expects the user to input
the variables as separate matrices, while ptm3 requires a single data.frame con-
taining all relevant variables, with their roles in the model specified explicitly.
Despite this difference in input structure, both functions offer the same set of
options and features for model specification. The variables to be defined are
listed in Tab. 5. If the threshold variable is not specified, the first lag of the
dependent variable is used by default. When no regressors are provided, the
model will include only a constant term. In case both exogenous and endoge-
nous regressors are specified, the functions always arrange the regressors in the
output by placing the exogenous variables first, followed by the endogenous vari-
ables, in the same order as specified in the input. An optional set of additional
instrumental variables can also be included through the IV or nameIV option,
along with lags of the regressors and the dependent variable that are included
by default.

The remaining options in the two functions allow the analyst to tailor the
estimation procedure according to their preferences. Specifically, the arguments
trimrate, ngrid, and h0 are related to the grid search algorithm, setting the
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Table 3: Simulation results for scenario 3.: model in Eq. (1) with J = 2, a
time-varying regressor, γ1 ̸= γ2 ̸= 0, and CPi1 = 7 and CPi2 = 8, ∀ i.

CP=7 CP=8
n = 50, T = 11 n = 50, T = 11

j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 0.447 1.290 2 β2 1.2 0.149 1.089
1 δI1 4.5 -0.462 0.648 2 δI2 6 -0.462 0.607
1 δX1 -1.5 0.281 0.944 2 δX2 -0.9 0.103 2.198
1 γ1 3 -0.231 0.553 2 γ2 10 -0.281 0.328
1 CP1 7 -0.067 0.127 2 CP2 8 -0.114 0.161

n = 150, T = 11 n = 150, T = 11
j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 -0.218 0.322 2 β2 1.2 0.093 0.224
1 δI1 4.5 -0.051 0.101 2 δI2 6 -0.061 0.091
1 δX1 -1.5 -0.174 0.281 2 δX2 -0.9 0.115 0.652
1 γ1 3 -0.093 0.255 2 γ2 10 -0.140 0.166
1 CP1 7 -0.019 0.045 2 CP2 8 -0.029 0.042

Table 4: Simulation results for scenario 4.: model in Eq. (1) with J = 2 and a
time-varying regressor, γ1 ̸= γ2 ̸= 0, CPi1 = 20, CPi2 = 30, ∀ i.

CP=20 CP=30
n = 50, T = 50 n = 50, T = 50

j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 -0.638 1.289 2 β2 1.2 -0.340 0.547
1 δI1 4.5 -1.714 1.741 2 δI2 6 -1.424 1.439
1 δX1 -1.5 -0.420 0.790 2 δX2 -0.9 -0.565 0.904
1 γ1 3 0.131 0.689 2 γ2 10 -0.155 0.292
1 CP1 20 0.227 0.421 2 CP2 30 0.002 0.206

n = 150, T = 50 n = 150, T = 50
j Parameter True value R̂B ̂RRMSE j Parameter True value R̂B ̂RRMSE
1 β1 0.8 0.086 0.534 2 β2 1.2 -0.082 0.274
1 δI1 4.5 -0.761 0.791 2 δI2 6 -1.14 1.149
1 δX1 -1.5 0.025 0.293 2 δX2 -0.9 -0.201 0.464
1 γ1 3 -0.247 0.402 2 γ2 10 -0.193 0.305
1 CP1 20 -0.038 0.136 2 CP2 30 -0.035 0.195

trimming rate and the number of grid points used to estimate the threshold, and
the parameter for Silverman’s rule of thumb in kernel estimation, respectively.
The option Iweight specifies the weight matrix, where TRUE corresponds to the
identity matrix and FALSE follows the specification provided in Box I of Seo and
Shin (2016). Finally, setting test.lin=TRUE performs the test for threshold
effects described in Sect. 2.4 using B bootstrap replications. Note that the
methods requires at least 6 times of observation: four lags of the dependent and
independent variables are used as instruments, and two more are necessary to
identify the regime switch (i.e., one per regime).

Results obtained using the ptm2 function may exhibit slight differences from
those computed with the xthenreg function in STATA due to the computation of
the inverse of matrices when deriving the weight matrix and the GMM estimator.
In STATA, if a matrix is not positive definite, its rows are sequentially inverted
until the diagonal elements become zero or negative, yielding a g2 inverse. In
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Table 5: List of input variables of functions ptm2 and ptm3. Note that in the first
column we omitted the pedices of the variables since they change accordingly
to the kind of the model, i.e. two- or three-way model.

Variable in Eq. (1) ptm2 ptm3
y Y nameY
q TV nameTV
x (exogenous) Xexo nameXexo
x (endogenous) Xendo nameXendo
z IV nameIV

contrast, in ptm2 and ptm3, the pseudo-inverse is computed. A performance
comparison between these two implementations is presented in Table 6. For
this purpose, three datasets comprising 150 statistical units observed over 50
time periods were randomly generated from the following dynamic panel models:

i yit = (−1 − 0.2xit)1
{
yi(t−1) ≤ 0

}
+ (1 + 0.2xit)1

{
yi(t−1) > 0

}
+ εit;

ii yit = (−5 − 0.14xit)1
{
yi(t−1) ≤ −1

}
+ (2 + 0.7xit)1

{
yi(t−1) > −1

}
+ εit;

iii yit = (5 + 1.2xit)1
{
yi(t−1) ≤ 10

}
+ (11 + 0.3xit)1

{
yi(t−1) > 10

}
+ εit.

The simulated datasets were subsequently estimated using both ptm2 and xthenreg.
The resulting parameter estimates are largely comparable, with neither method
demonstrating a consistent advantage over the other.

Table 6: Comparison of the estimates obtained using ptm2 and xthenreg for
the three simulated datasets i–iii, with N = 150 and T = 50.

Model i Model ii Model iii
True value PanelTM xthenreg True value PanelTM xthenreg True value PanelTM xthenreg

γ 0 -0.08 -0.38 -1 -2.77 -4.49 10 11.74 5.95
β -0.2 -0.15 -0.25 -0.14 -0.10 -0.41 1.2 0.60 2.67
δI 2 0.46 2.48 7 -4.34 9.44 6 -1.36 9.60
δX 0.4 0.23 0.38 0.84 0.85 1.05 -0.9 -0.03 -2.37

3.1 Other functions
Alongside the functions ptm2 and ptm3, the PanelTM package includes three
additional functions: cpoint, simptm, and perfm.

The cpoint function identifies the regime switch time in two- or three-way
panel threshold regression models where qijt = yij(t−1) as in Eq. (5). Since a
time series may cross above and subsequently fall below the threshold multiple
times, the change point is defined as the time t after which the longest uninter-
rupted sequence of observations within the lower (or upper) regime begins.

The simptm function generates synthetic datasets based on two- or three-
way dynamic panel threshold regression models, where the threshold variable is
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given by qijt = yij(t−1). For each level j of the third dimension, the simulated
data exhibit two distinct regimes separated by a change point occurring at a pre-
specified time CPj , with the transition governed by a regime-specific threshold
value γj . The model allows for the inclusion of a constant term and (optionally)
one exogenous time-varying regressor. Specifically, the data are generated from
the following model:

yijt =
{
ϕ

(1)
1j + ϕ

(2)
1j xijt + σεijt, if yij(t−1) ≤ γj , t ≤ CPj ,

ϕ
(1)
2j + ϕ

(2)
2j xijt + σεijt, if yij(t−1) > γj , t > CPj ,

(7)

where:

• i = 1, . . . , n represents statistical units,

• t = 1, . . . , T indicates the time periods,

• j = 1, . . . , J indexes the level of the third dimension,

• xijt denotes the value of the exogenous regressor for individual i, level j,
and time t, simulated according to an AR(1) process:

xijt = ρjxij(t−1) + ηijt, (8)

where ρj is the autoregressive coefficient for level j and ηijt is drawn from
a white noise process with zero mean and constant variance,

• εijt is drawn from a standard Gaussian white noise for each fixed j,

• σ is a user-defined scaling constant.

The function returns a list of B independently simulated datasets, each struc-
tured as a balanced panel. In the panels, each unit i satisfies a regime-switching
condition: observations before the change point CPj correspond to one regime
(e.g., qijt ≤ γj), while those after CPj correspond to the other regime (e.g.,
qijt > γj), ensuring a clean regime separation in the simulated sample. This
function was used to generate the data for the simulation studies presented in
Sect. 1 and 3, and its usage is further illustrated in Sect. 4.2.

Finally, the function perfm computes the performance metrics employed to
evaluate the Monte Carlo simulation study reported in Tables 1-4, namely the
bias, relative bias, root mean squared error, and relative root mean squared
error as defined in Eq. (6). For further details on its use, please refer to the
example provided in Sect. 4.2.

4 Illustrations
The R package PanelTM can be accessed and downloaded from R CRAN:
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#Install
install.packages("PanelTM")

#Import
library(PanelTM)

In the subsections below, we propose two examples to illustrate its usage and
potential applications. The first example is a case study on fruit bioimpedance,
while the second one is a simulation exercise. Furthermore, the code repro-
ducing the Monte Carlo simulation study in Sects. 2.6 and 3 using PanelTM is
provided in the supplementary material. Beyond these examples, the package
is applicable to a wide range of data with similar characteristics. Potential
applications include climate change studies, to analyse phenomena driven by
extreme precipitation events; medical research, to assess patients’ responses to
different drug dosages; economics, to detect structural shocks affecting indus-
trial production, unemployment, or prices; finance, to identify regime shifts in
market behaviour; and engineering, for monitoring system failures or changes
in operating conditions.

4.1 Application to fruit bioimpedance
Alongside the functions described in Sect. 3, PanelTM also contains some data
about fruit bioimpedance. The data is a subset of a broader database produced
and owned by the Sensing Technologies Laboratory at the Free University of
Bozen-Bolzano (Italy)1 and analysed in Di Lascio and Perazzini (2024). The
data available on the package concerns a 50-banana production batch observed
for 11 days. Variables collected are the weight and bioimpedance measure-
ments at three different electrical frequencies measured using a portable electri-
cal impedance spectroscopy device, called FruitMeter. The data can be easily
accessed using the data() function:

data(banana)
str(banana)
# > Classes ’data.table ’ and ’data.frame ’: 1650 obs. of 5
# >variables:
# > $ i : num 1 1 1 1 1 1 1 1 1 1 ...
# > $ t : num 1 2 3 4 5 6 7 8 9 10 ...
# > $ j : num 1 1 1 1 1 1 1 1 1 1 ...
# > $ bioimpedance: num 17256 18705 21563 23041 23511 ...
# > $ weight : int 213 208 203 196 192 187 183 178 ...
# > - attr(*, ". internal.selfref ")=< externalptr >

In this framework, i denotes the statistical unit (i.e., a banana from the pro-
duction batch), t represents the day of observation, and j indicates the electrical
frequency at which bioimpedance was measured. Specifically, the frequency lev-
els correspond to 20 Hz for j = 1, 100 Hz for j = 2, and 500 Hz for j = 3.

1https://sensingtechnologies.groups.unibz.it/
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Figure 1: Time series of bioimpedance, banana i = 1.

The bioimpedance time series for a given frequency level j exhibit a consis-
tent pattern across statistical units: an initial increasing phase followed by a
decreasing trend, indicating the presence of a regime switch. This pattern is
clearly revealed through a graphical representation of the time series, which can
be produced using the graphical tools available in R, such as:

library(ggplot2)

# Select a banana (e.g. i = 1)

banana_i <- banana[which(banana$i == 1),]

# Time series of bioimpedance for the selected banana (Fig.1)

ggplot(banana_i, aes(x = t, y = bioimpedance ,
colour = factor(j))) + geom_line(size = 1) +
scale_x_continuous(breaks = banana_i$t) +
labs( x = "Time␣(t)", y = "Bioimpedance",

colour = "Frequency␣(j)") +
theme_minimal () + theme(legend.position = "bottom") +
guides(colour = guide_legend(nrow = 1))

Fig. 1 displays the bioimpedance time series for a randomly selected banana
(i = 1), across the three frequency levels j. A comparable pattern is observed
across all bananas in the dataset.

Focusing on a single level of j, a simple model to investigate the bioimpedance
is:

yit = ϕ1 1 {yit−1 ≤ γ} + ϕ2 1 {yit−1 > γ} + εit,

which can be specified and estimated as follows:

# Select a j value
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data_j <- banana[which(banana$j==1),]

# Prepare input matrix Y for ptm2

bioimpedance <- matrix(data_j$bioimpedance ,
ncol=length(unique(data_j$t)), byrow=TRUE)

# Estimation

res_m1 <- ptm2(Y=bioimpedance)
str(res_m1)

# > Formal class ’ptm2 ’ [package "PanelTM "] with 5 slots
# > ..@ threshold : Named num [1:2] 16717 0
# > .. ..- attr(*, "names ")= chr [1:2] "est.coef" "p.val"
# > ..@ estimates : num [1, 1:2] 5167 0
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : chr "delta.c"
# > .. .. ..$ : chr [1:2] "est.coef" "p.val"
# > ..@ cov. : num [1:2, 1:2] 9736 745 745 2795
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : chr [1:2] "delta.c" "threshold"
# > .. .. ..$ : chr [1:2] "delta.c" "threshold"
# > ..@ residuals .: num [1:45 , 1:50] 2858 1479 1479 470 470 ...
# > ..@ test.lin. :List of 3
# > .. ..$ method: chr "parametric bootstrap -based linearity test"
# > .. ..$ B : num 1000
# > .. ..$ p.val : num 1

The output of the ptm2 function comprises five elements: threshold, estimates,
cov., residuals., and test.lin.. The first two components provide the esti-
mated values of the threshold parameter γ and of the model parameters, which
in this case consist solely of δI . For each estimate, the associated p-value -
computed using the corresponding z-score - is also reported. The cov. element
returns the covariance matrix Gj as defined in Sect. 2.3, while residuals con-
tains the first-differenced residuals ∆ϵit. Finally, the test.lin. slot provides
the number of bootstrap replications and the resulting p-value for the threshold
effect test described in Sect. 2.4. In our application, the output indicates that
the bootstrap test supports the presence of a regime switch, which is estimated
to occur at the threshold value γ̂ = 16717 of the lagged dependent variable yt−1.
Furthermore, both γ and δI are found to be statistically significant.

Additional variables may be incorporated into the model. For instance, the
weight of the banana could be introduced as an endogenous regressor. In such
a case, the corresponding model specification would be:

# Prepare input matrix X for ptm2

weight <- matrix(data_j$weight ,
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ncol=length(unique(data_j$t)), byrow=TRUE)

# Estimation

res_m2 <- ptm2(Y=bioimpedance , Xendo=weight)

res_m2@threshold

# > est.coef p.val
# > 1.779751e+04 8.646353e-01

res_m2@estimates

# > est.coef p.val
# > beta.X1 95.03142 0.9400501
# > delta.c 5426.32248 0.9201690
# > delta.X1 23.24755 0.8270913

res_m2@test.lin.

# > $method
# > [1] "parametric bootstrap -based linearity test"
# > $B
# > [1] 1000
# > $p.val
# > [1] 1

In this case, the test supports the presence of a threshold effect, and the esti-
mated value γ̂ = 17797.51 aligns with the estimate obtained under the previous
model specification. However, both the threshold and the coefficients associated
with the regressor and the constant are not found to be statistically significant.

Once the threshold γ̂ has been estimated, this information can be used to
identify the time at which a regime switch occurs in the time series of each
statistical unit using the cpoint function:

# Apply cpoint to the two -way panel using the estimated
# threshold from the model with a constant only (res_m1)

cp_m1 <- cpoint(data.=data_j, nameI="i",
nameT="t", nameJ="j", nameY="bioimpedance",
thresholds=res_m1@"threshold"[[1]])

str(cp_m1)

# > Formal class ’cpoint ’ [package "PanelTM "] with 1 slot
# > ..@ CP:’data.frame ’: 50 obs. of 2 variables:
# > .. ..$ i : num [1:50] 1 2 3 4 5 6 7 8 9 10 ...
# > .. ..$ CP_j1: num [1:50] 8 8 8 9 8 8 7 7 8 9 ...

summary(cp_m1@CP [,2])
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# > Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
# > 6.000 7.000 8.000 7.915 8.500 9.000 3

It is important to note that the cpoint function returns NA values when the
statistical unit does not exhibit any observation above (or below) the estimated
threshold γ̂, or in cases where, due to the presence of multiple regime switches, a
unique time point cannot be identified after which the threshold variable remains
consistently above (or below) γ̂ for a longer duration. In our example, we find
that the change point is on average at time t = 8.

As an alternative to analysing each of the three electrical frequencies sepa-
rately, the ptm3 function allows for joint estimation across all frequency levels
within a unified model specification. The following application illustrates the
use of ptm3 to estimate a model with a constant as the sole regressor and for
a model with an endogenous regressor. The output and results are consistent
with those obtained using the ptm2 function for individual frequency levels. In
the example below, the test.lin option is disabled to reduce computational
time; however, this option remains available and, when enabled, performs the
linearity test independently for each value of j.

# Model with a constant as the only regressor

res_m3 <- ptm3(data.=banana , nameI="i", nameT="t", nameJ="j",
nameY="bioimpedance", test.lin=FALSE)

str(res_m3)

# > Formal class ’ptm3 ’ [package "PanelTM "] with 5 slots
# > ..@ threshold : num [1:3, 1:3] 1 2 3 16717 16845 ...
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:3] "j" "coef" "p.val"
# > ..@ param : num [1:3, 1:3] 1 2 3 5167 3848 ...
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:3] "j" "delta.c" "p.val"
# > ..@ cov. : num [1:2, 1:2, 1:3] 9736 745 745 2795 ...
# > ..@ residuals .:List of 3
# > .. ..$ : num [1:45 , 1:50] 2858 1479 1479 470 470 ...
# > .. ..$ : num [1:45 , 1:50] 2675 1390 1390 464 464 ...
# > .. ..$ : num [1:45 , 1:50] -3801 946 946 290 290 ...
# > ..@ test.lin. : list()

res_m3@threshold

# > j coef p.val
# > [1,] 1 16717.14 0
# > [2,] 2 16845.23 0
# > [3,] 3 15322.87 0
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res_m3@param

# > j delta.c p.val
# > [1,] 1 5166.999 0
# > [2,] 2 3847.818 0
# > [3,] 3 5801.612 0

# Model with the weight of the banana as endogenous regressor

res_m4 <- ptm3(data.=banana , nameI="i", nameT="t", nameJ="j",
nameY="bioimpedance", nameXendo="weight", test.lin=FALSE)

res_m4@threshold

# > j coef p.val
# > [1,] 1 17797.51 0.8646353
# > [2,] 2 17762.85 0.8986385
# > [3,] 3 14463.02 0.7303314

res_m4@param

# > j beta.X1.est.coef beta.X1.p.val delta.c.est.coef
# > [1,] 1 95.03142 0.9400501 5426.322
# > [2,] 2 123.50210 0.8953514 11375.184
# > [3,] 3 149.01122 0.4979287 16562.033
# > delta.c.p.val delta.X1.est.coef delta.X1.p.val
# > [1,] 0.9201690 23.24755 0.8270913
# > [2,] 0.7105165 -25.18488 0.8997474
# > [3,] 0.3275378 -71.82204 0.5628072

Finally, as with the ptm2 function, results from the ptm3 function can be
used for applying the cpoint function and identifying the time of regime switch
in the analysed time series:

# Apply cpoint to the three -way panel using the estimated
# threshold from the model with a constant only (res_m3)

cp_m3 <- cpoint(data.=banana , nameI="i", nameT="t",
nameJ="j", nameY="bioimpedance",
thresholds=res_m3@"threshold"[,2])

str(cp_m3)

# > l class ’cpoint ’ [package "PanelTM "] with 1 slot
# > ..@ CP:’data.frame ’: 50 obs. of 4 variables:
# > .. ..$ i : num [1:50] 1 2 3 4 5 6 7 8 9 10 ...
# > .. ..$ CP_j1: num [1:50] 8 8 8 9 8 8 7 7 8 9 ...
# > .. ..$ CP_j2: num [1:50] 8 7 8 8 8 8 7 7 8 8 ...
# > .. ..$ CP_j3: num [1:50] 8 7 7 8 8 8 6 7 8 8 ...
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summary(cp_m3@CP [ ,2:4])

# > CP_j1 CP_j2 CP_j3
# > Min. :6.000 Min. :6.000 Min. :3.000
# > 1st Qu .:7.000 1st Qu .:7.000 1st Qu .:7.000
# > Median :8.000 Median :8.000 Median :7.000
# > Mean :7.915 Mean :7.646 Mean :7.261
# > 3rd Qu .:8.500 3rd Qu .:8.000 3rd Qu .:8.000
# > Max. :9.000 Max. :9.000 Max. :9.000
# > NA’s :3 NA’s :2 NA’s :4

4.2 Data random generation and their analysis
The PanelTM package also provides functionality for simulating data from two-
or three-way panel structures through the simptm function. For instance, sup-
pose to generate 50 datasets, each consisting of 20 individuals observed over 15
time periods, according to the following two-way panel model:

yit = (−0.7 − 0.5xit)1(yit−1 ≤ 0) + (1.8 + 0.8xit)1(yit−1 > 0) + εit,

where the regime switch occurs at time t = 12, xit follows an autoregressive
process with parameter 0.7, and εit is a random error with unit variance. This
data can be simulated using the following lines of code:
sims <- simptm(n=20, T.=15, J=1, CP=12, gamma=c(0),

phi_c=matrix(c(-0.7,1.8), nrow=1, byrow=TRUE),
phi_X=matrix(c(-0.5,0.8), nrow=1, byrow=TRUE),
sigmau=1, parAR =0.2, B=50, seedstart =1)

str(sims)

# > Formal class ’simptm ’ [package "PanelTM "] with 1 slot
# > ..@ simulation:List of 2
# > .. ..$ Data matrix for B=1:’data.frame ’: 300 obs. of
# > 5 variables:
# > .. .. ..$ i : int [1:300] 1 1 1 1 1 1 1 1 1 1 ...
# > .. .. ..$ t : int [1:300] 1 2 3 4 5 6 7 8 9 10 ...
# > .. .. ..$ j : int [1:300] 1 1 1 1 1 1 1 1 1 1 ...
# > .. .. ..$ Y : num [1:300] -2.676 -0.569 -1.252 ...
# > .. .. ..$ X1: num [1:300 , 1] 1.5076 -0.0283 ...
# > .. ..$ Data matrix for B=2:’data.frame ’: 300 obs. of
# > 5 variables:
# > .. .. ..$ i : int [1:300] 1 1 1 1 1 1 1 1 1 1 ...
# > .. .. ..$ t : int [1:300] 1 2 3 4 5 6 7 8 9 10 ...
# > .. .. ..$ j : int [1:300] 1 1 1 1 1 1 1 1 1 1 ...
# > .. .. ..$ Y : num [1:300] -0.8 -0.778 -0.467 ...
# > .. .. ..$ X1: num [1:300 , 1] -1.455 -0.349 0.179 ...

[...]
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Notice that the argument sigmau stands for σ in Eq. (7). The simulated data
can be fitted using either the ptm2 or ptm3 function. In fact, estimating a ptm3
model where the column j contains a single unique value is equivalent to fitting
a ptm2 model. To illustrate this, we use the ptm3 function to estimate the
following model on each of the two simulated datasets:

yit = (1,x′
it)ϕ1 1 {yit−1 ≤ γ} + (1,x′

it)ϕ2 1 {yit−1 > γ} + εit,

# Estimate the two simulated two -way panel threshold models
# on the first simulated dataset

estimates1 <- ptm3(sims@simulation [[1]] , nameI="i",
nameT="t", nameJ="j", nameY="Y", nameXexo="X1",
test.lin=FALSE)

str(estimates1)

# > Formal class ’ptm3 ’ [package "PanelTM "] with 5 slots
# > ..@ threshold : num [1, 1:3] 1 -0.172 0.893
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:3] "j" "coef" "p.val"
# > ..@ param : num [1, 1:7] 1 -1.3895 0.0679 0.791 ...
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:7] "j" "beta.X1.est.coef" ...
# > ..@ cov. : num [1:4, 1:4, 1] 0.5794 -0.8876 ...
# > ..@ residuals .:List of 1
# > .. ..$ : num [1:117 , 1:20] 0.522 0.522 0.522 -1.371 ...
# > ..@ test.lin. : list()

To expedite computation across all datasets, the lapply() function can be
used to apply ptm3 to each simulated dataset contained in the output list of
sims:
# Estimation

estimates_list <- lapply(sims@simulation ,
function(data){

ptm3(data , nameI = "i", nameT = "t", nameJ = "j",
nameY = "Y", nameXexo = "X1", test.lin= FALSE)
}

)

# Check the results (e.g., on the first dataset)

str(estimates_list [[1]])

# > Formal class ’ptm3 ’ [package "PanelTM "] with 5 slots
# > ..@ threshold : num [1, 1:3] 1 -0.172 0.893
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# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:3] "j" "coef" "p.val"
# > ..@ param : num [1, 1:7] 1 -1.3895 0.0679 0.791 ...
# > .. ..- attr(*, "dimnames ")= List of 2
# > .. .. ..$ : NULL
# > .. .. ..$ : chr [1:7] "j" "beta.X1.est.coef" ...
# > ..@ cov. : num [1:4, 1:4, 1] 0.5794 -0.8876 ...
# > ..@ residuals .:List of 1
# > .. ..$ : num [1:117 , 1:20] 0.522 0.522 0.522 -1.371 ...
# > ..@ test.lin. : list()

The performance of the model on the simulated datasets can now be evaluated
using the perfm function, which computes the bias (nrb), relative bias (rb), root
mean squared error (rmse), and relative root mean squared error (rrmse). The
following code lines illustrate the application of this function to the three three-
differenced parameters of the model estimated on the 50 simulated dataset,
namely: β, δI , and δX .

# Collect the 50 estimated values of beta (the coefficient of
# the exogenous regressor in the lower regime) into a vector

betaX1_estimates <- sapply(estimates_list ,
function(est) est@param [,2])

# Compute performance measures

pm1 <- perfm(truepar = -0.5, estpar = betaX1_estimates)

pm1

# > An object of class "perfm"
# > Slot "trueval ":
# > [1] -0.5

# > Slot "rb":
# > [1] -0.1494372

# > Slot "nrb":
# > [1] 0.07471858

# > Slot "rrmse ":
# > [1] 2.085514

# > Slot "rmse":
# > [1] 1.042757

# Collect the 50 estimated values of delta.c (the difference
# between the constants of the model) into a vector
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delta_c_estimates <- sapply(estimates_list ,
function(est) est@param [,4])

# Compute performance measures

pm2 <- perfm(truepar = 1.8 + 0.7, estpar = delta_c_estimates)

pm2

# > An object of class "perfm"
# > Slot "trueval ":
# > [1] 2.5

# > Slot "rb":
# > [1] -1.801049

# > Slot "nrb":
# > [1] -4.502623

# > Slot "rrmse ":
# > [1] 1.944078

# > Slot "rmse":
# > [1] 4.860196

# Collect the 50 estimated values of delta.X1 (the difference
# between the exogenous regressor coefficients) into a vector

delta_X1_estimates <- sapply(estimates_list ,
function(est) est@param [,6])

# Compute performance measures

pm3 <- perfm(truepar = 0.8 + 0.5,
estpar = delta_X1_estimates)

pm3

# > An object of class "perfm"
# > Slot "trueval ":
# > [1] 1.3

# > Slot "rb":
# > [1] -0.3119362

# > Slot "nrb":
# > [1] -0.4055171

# > Slot "rrmse ":
# > [1] 1.18448
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# > Slot "rmse":
# > [1] 1.539824

5 Summary and discussion
This paper introduces PanelTM, an R package designed to estimate dynamic
panel threshold models with two- or three-way structures. Built upon the gen-
eralized method of moments estimation approach of Seo and Shin (2016) and
its adaptation to three-way panels by Di Lascio and Perazzini (2024), PanelTM
offers a substantial contribution to the toolbox available for modern panel data
analysis. In particular, it provides a flexible and accessible framework capable
of handling lagged dependent variables as threshold variables, endogenous and
exogenous covariates, and allowing for threshold heterogeneity across a third
dimension. Beyond model estimation, PanelTM also offers functionalities for
detecting regime switches via the cpoint function, simulating panel threshold
data through the simptm function, and evaluating estimator performance using
the perfm function. The package thus provides a comprehensive environment
not only for applied researchers aiming to detect structural breaks in panel set-
tings, but also for methodologists interested in conducting simulation studies
or exploring theoretical properties of threshold estimators. Its implementa-
tion in an open-source software environment further enhances accessibility and
reproducibility, offering an important tool for researchers in econometrics, bio-
statistics, and other fields dealing with dynamic, regime-switching processes in
panel data.
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