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Abstract

Missing values in multivariate dependent variables may occur dur-
ing data collection, requiring imputation methods capable of han-
dling complex inter-variable relationships. We propose a nonparamet-
ric copula-based method for imputing dependent multivariate missing
data, called NPColmp. By leveraging the conditional empirical beta
copula of the missing variables given the observed ones, NPColmp
imputes data while accounting for its distributional shape, particu-
larly radial symmetry, and adjusting the multivariate values used for
imputation accordingly. NPColmp is highly flexible and can han-
dle multivariate missing data with any type of missingness pattern.
The performance of the NPColmp has been evaluated through an ex-
tensive Monte Carlo study and compared with classical imputation
methods, as well as with its direct competitor, the Colmp algorithm.
Our findings indicate that NPColmp is particularly effective in pre-
serving microdata and dependence structure. The strong performance
of the proposed method is further supported by empirical case studies
in the agricultural sector. Finally, the NPColmp algorithm has been
implemented in the R package CoImp, which is available on CRAN.
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1 Introduction

Imputation methods are statistical techniques used to fill in missing data
within a dataset (see e.g. Little and Rubin (2019)). Missing data can arise in
various fields, such as health care (see e.g. Molenberghs and Kenward (2007)),
finance (see e.g. Hiittner et al. (2020), Cont and Kan (2011)), environmental
science (see e.g. Chapon et al. (2023)), and social sciences (see e.g. Hammon
(2023), Costantini et al. (2023)), due to various reasons, such as data entry
errors, non-response in surveys, equipment malfunctions. Handling missing
data becomes crucial since incomplete datasets can lead to biased results,
reduced statistical power, and inaccurate conclusions. Even in big data an-
alytics (Balusamy et al. (2021)), the inaccuracy caused by missing data can
compromise the reliability of results, as the vast and complex nature of these
datasets amplifies the impact of any gaps in the data. In this context, im-
putation methods are useful in (i) maintaining data integrity since big data
often comes from various sources, (ii) enhancing model performance since
imputation ensures that machine learning models can be trained on the full
dataset, (7i7) ensuring that the data stream remains consistent and reliable
for real-time analytics when data is collected continuously in real-time (see
e.g. Enders (2022)). Regardless, there are still some applied contexts where
collecting and maintaining big data is challenging, e.g. in clinical and health-
care research as well as in social sciences and humanities, mainly due to data
privacy concerns, limited access to digital infrastructure, variability in data
formats, and difficulties in standardizing data collection. Therefore, impu-
tation methods prove even more useful as they play a critical role in data
preprocessing and ensure the integrity and usefulness of data for subsequent
analysis.

In order to decide how to deal with missing data, several factors need to be
considered: the missing data rate and the size of the complete data sample,
the reason why there are missing values, if possible, and the kind of relation-
ship among the observed variables. Different techniques have been proposed
in literature (see e.g. Schafer (1997), Little and Rubin (2019)) and have
been applied in various fields including surveys (Chen and Shao (2000), Lit-
tle (1988)), clinical trials (Rivero et al. (2004)), bioinformatics (Wang et al.
(2009)) and agricultural science (Robbins et al. (2013)). Traditional methods
are the hot-deck donor (HD hereafter) imputation method (Fuller and Kim
(2005)) and the k-nearest neighbour (kNN hereafter) imputation method (Chen
and Shao (2000)) with its variants (e.g. Tutz and Ramzan (2015), Hasler and
Tillé (2016)). Stochastic imputation methods include, among the others, the
regression imputation by the expectation-maximization (EM hereafter) algo-
rithm (Dempster et al. (1977)), the predictive mean matching (PMM here-



after) imputation method (Little (1988)), and more recent methods, such as
the imputation method by chained equations (MICE hereafter) (Van Buuren
and Groothuis-Oudshoorn (2011)) and the Colmp method (Di Lascio et al.
(2015)) based on copulas (Sklar (1959)). All the mentioned methods are de-
veloped in the single imputation framework but the MICE; in this work we
focus the attention on the single imputation context.

When the focus of the analysis is on preserving the dependence structure
of multivariate data, imputation can be performed by filling in the miss-
ing values using draws from the conditional distribution of the missing data
given the observed ones. In the so-called fully conditional specification (FCS
hereafter) approach (Van Buuren et al. (2006)), which serves as the theo-
retical framework for the development of MICE, the multivariate model is
built through a series of conditional models, each corresponding to an incom-
plete variable. Two main issues arise from this approach: (i) the statistical
properties of the implied joint distribution are difficult to establish, and (i7)
the implied joint distribution may not theoretically exist due to the incom-
patibility of conditionals (Arnold et al. (1999)). To overcome these issues,
the conditional distributions should be derived from the joint multivariate
distribution of all the variables of interest. Unfortunately, this is often ex-
tremely difficult, especially when the margins are different and/or the data
exhibit a complex multivariate dependence structure. In this regard, copula
models (see e.g. Nelsen (2006), Durante and Sempi (2016)), which make it
possible to flexibly model the multivariate dependence structure of the data
generating process (DGP hereafter) while separating it from the univariate
margins, have enormous potential.

Copula function in the imputation context

To the best of our knowledge, copulas have been used for imputation pur-
poses only in a few cases. The first work is by Kéaarik and Kaarik (2009)
who used Gaussian copulas to impute correlated incomplete data with re-
peated measurements through the mode of the conditional distributions de-
rived from the joint density function. Few years later, Di Lascio et al. (2015)
provided a more flexible solution to the problem of imputing by deriving the
conditional probability density function of the available variables given the
missing ones through the conditional copula density function. The copula-
based imputation algorithm (Colmp hereafter) developed by Di Lascio et al.
(2015) and extended in Di Lascio et al. (2014) allows the imputation of
multivariate missing values of any missingness pattern by using all the Ellip-
tical and Archimedean copula models. In addition, since the Colmp models
margins nonparametrically though local likelihood estimators, it avoids the



analytical problems that may arise when deriving conditional densities for
certain combinations of copula and margins. Hasler et al. (2018) developed
an imputation method based on vine copulas (see e.g. Bedford and Cooke
(2002), Czado (2019)) that flexibly builds a joint model by a factorisation
of the joint density into a tree of bivariate copulas. The developed method
is suitable for multivariate missing data and allows for the use of a broader
range of copula families than those considered in Colmp. However, it can
only be applied to missing data with a monotone pattern.

In the multiple imputation context, Lun and Khattree (2022) developed
an approach for univariate missing pattern that uses the copula only to trans-
form non-normal data to normal one. The idea here is to circumvent the
problem of non-symmetric data and allow the use of standard normality-
based imputation techniques. More recently, Chapon et al. (2023) developed
a method for imputing missing values within a Bayesian framework, specif-
ically designed for extreme missing values. The authors proposed imputing
time series of a target site using observations of the same variables from
neighboring sites. They modelled the joint distribution of the time series at
the target site and its neighboring sites using a D-vine copula with paramet-
ric margins and performed imputation by sampling values from the posterior
distribution of a missing value, conditional on the observed stations for the
given date.

Moving slightly away from the strict context of imputation, several con-
tributions in the field of model estimation in the presence of missing data rely
on copula-based methods. Ding and Song (2016) developed the expectation-
maximization (EM hereafter) algorithm for the Gaussian copula regression
model making it possible to estimate both the marginal parameters and the
correlation matrix in presence of missing data. A more applied work that
combines functional data analysis with imputation through copulas is in Chen
et al. (2019). The authors effectively modelled the inter-sensor relationships
in structural strain monitoring systems by using kernel copula density estima-
tors and, inspired by the Colmp approach, used the joint model for imputing
structural strains. The authors imputed the marginal distribution of the
missing data itself using distribution regression methods instead of estimat-
ing the marginal distribution of the missing data directly from non-missing
ones. Kertel and Pauly (2022) approached the estimation of the Gaussian
copula with an incomplete dataset through the EM algorithm and showed
how to model margins through mixture models when no a priori knowl-
edge of their parametric family is available. More recently, Liebscher (2024),
assuming a missing completely at random (MCAR hereafter) mechanism,
estimated the copula parameter using an approach based on minimizing a
linear combination of the Cramér-von Mises divergence measures between
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the sample copula and a parametric copula, each corresponding to a specific
missing data pattern. This method ensures a consistent estimation of the
copula parameters while avoiding the inaccuracies introduced by a possible
imputation.

In the face of a now extensive literature of imputation methods, it is
inevitable to ask what is the best method to use. In the context of single
imputation using stochastic methods, the Colmp algorithm appears to be an
attractive approach both theoretically and empirically, particularly when the
primary goal is to preserve the complex multivariate dependence structure
of the DGP and the missing data follow any pattern. Aissia et al. (2017)
compared the performance of several imputation methods and applied them
to hydrological data finding that the Colmp approach showed the best per-
formance. Shiau and Lien (2021) imputed daily suspended sediment loads,
demonstrating the usefulness of Colmp in terms of various performance mea-
sures, such as the root mean squared error. Nevertheless, some authors (Kim
et al. (2017), Hasler et al. (2018), Hiittner et al. (2020)) compared Colmp
with other imputation methods, highlighting some of its weaknesses, such
as slow imputation due to the computational cost of the Hit-or-Miss Monte
Carlo method and the limited families of copula models that are used to
derive the conditional functions. Specifically, Kim et al. (2017) compared
different imputation methods to assess their impact when re-sampling tech-
niques, such as the jackknife and bootstrap, are used to estimate the variance
of parameters in complex sampling designs. The Colmp showed a good per-
formance in cluster sampling design where the data are skewed to right, but
required more computational time than the other methods considered. This
latter feature of the Colmp has also been confirmed by Hasler et al. (2018)
who developed a D-vine imputation method for MCAR data with mono-
tone non-response pattern. The method proposed appeared to have a better
performance than the Colmp in many of the considered cases, even though
it did not overcome all the considered competitors. A more applied work
considering the performance of the Colmp is by Hiittner et al. (2020) who
interpolated missing values in dependent credit spreads data using the krig-
ing technique. The authors found that the Colmp does not perform very well
with this kind of data, likely due to the fact that the imputation carried out
through a randomly drawn imputed value is not the optimal point forecast.

Based on the discussed literature, there remains a need to develop a flex-
ible and powerful copula-based imputation method that: (i) enables reliable
multivariate missing data imputation while preserving the multivariate de-
pendence structure of the DGP, (i) is data-driven and distribution-free to
maximize flexibility, (#i7) has a competitive computational burden, and (iv)
does not present theoretical issues in using conditional distributions, as these



are derived from the joint distribution of missing and available values.

Summary

The main purpose of this paper is to develop a copula-based imputation
method for multivariate dependent missing data of any pattern that: (i)
overcomes the weaknesses of the Colmp method, primarily the limited set of
copula families that can be used and its computational burden, (i) avoids
the problem of the incompatibility of conditionals found in other well-known
imputation methods based on the FCS approach, and (iii) provides accurate
imputations to preserve the dependence structure despite using a single guess
to replace each missing value. To achieve this, we propose a nonparamet-
ric imputation method that is highly flexible, eliminates the risk of model
misspecification, avoids the use of the Hit-or-Miss approach for generating
missing data, and prevents theoretical issues in deriving conditional distri-
butions.

The paper is organized as follows. In Section 2 we present in detail the
nonparametric copula-based imputation method (NPColmp hereafter) after
describing its mathematical framework and setting the notation. In Section 3
we investigate the performance of the NPColmp in a large Monte Carlo
study comparing it with the Colmp and other competing methods. Section 4
presents empirical applications to two case studies concerning the agricultural
sector. Finally, Section 5 outlines conclusions and discusses proposals for
further research.

2 The NPColmp method

Here we present the nonparametric copula-based imputation method, called
NPColmp, which imputes multivariate missing data of any pattern and di-
mension and leverages the conditional empirical copula of the missing vari-
ables given the observed ones.

2.1 Mathematical framework and notation

Given a p-dimensional real random row vector X = (X,...,X;,...,X,) and
its realization © = (x1,...,xj,...,2,), let F(-) be a p-dimensional cumulative
distribution function with univariate marginal distribution functions Fj(-),
for j = 1,...,p. Then, following Sklar (1959), there exists a copula C :
[0, 1]” — [0, 1] such that:

F(x)=F(x,...,z5,...,2) = C(Fi(x1), ..., Fj(z;),..., Fp(xp)).
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If F5(-), j = 1,...,p are continuous, then the copula C(-) associated with
distribution function F'(-) is unique and is given by:

C(u) =C(uy,...,uj...,uy) = PU <wuy,....U; <wj,....U, <up)
= F(F'(u),- o F N wy), - Fy ()

= F(z,...,%5,...,%p), (1)

where U = (Uy,...,Uj, ..., Up,) is the vector of the probability integral trans-
forms, defined as U; = F;(X;) for j = 1,...,p, such that U; ~ U(0,1), ¥y,
and F;1(), ... ,Fj_l(-), ..., F;71(-) are the quantile functions (i.e. the inverse
of marginal distribution functions). Therefore, a p-dimensional copula C(+)
(with p > 2) is a p—dimensional distribution function with univariate uniform
margins.

Let X, = (Xj)jer € R? be the subvector of X corresponding to the
indices v C {1,...,p}, where |v| = ¢ < p, containing missing data. Let U,
be the subvector of U corresponding to X,. Furthermore, let , and u,
be realizations of X, and U, respectively. Let X, = (X;)jcr € RP™9 be
the subvector of X corresponding to the indices v C {1,...,p} \ v, where
|v] = p — ¢, containing no missing data. Let U, be the vector of uniform
variables corresponding to X, i.e. a subvector of U. Hence, x; and u;
are realizations of X, and Uy, respectively. The conditional copula function
Cu,u, (u) used to impute the missing values u, is defined through the Bayes’

rule as follows: O ()
u
Crr ooy (w) = =222 9
Uu|Uu(u’) CU; (’U,,;) ( )
Specifically, in the method we propose we use the empirical version of the
conditional copula function in Eq. (2) based on the following empirical beta

copula (Segers et al. (2017)):

1 e .
Cg) = S T Fp (). wel0l.i=1.0. (3
i=1 j=1 '

where

(n) _
R =" 1{Xp; < Xi;}
k=1

is the rank of X;; among (X ;,...,X, ), and, for u € [0, 1] and REZ-) =re

{1,...,n},
Fop(u) = P(Upn < u) = En: (”) w(1 — )"



is the cumulative distribution function of a beta probabilistic model B(r, n +
1—r)and Uy, < -+ < Uy, generically denote the order statistics based on
n independent random variables Uy, ..., U,, uniformly distributed on [0, 1].
The empirical beta copula is then defined as a smoothed version of the em-
pirical copula and it is a genuine copula that does not require the choice of a
smoothing parameter (see e.g. Segers et al. (2017)). Hence, the conditional
copula in Eq. (2) can be estimated through its empirical beta version by
exploiting the Eq. (3):

B u
CEun () = s @

As an example, in case of missing bivariate variables, say X; and X; so
that v = (5,7 ) and v = (1,...,5 — 1,5+ 1,....5 = 1,5/ + 1,...,p), the
conditional empirical beta copula C(BMUD (u) in Eq. (4), where U, = (U;,Uy)
and Uy = (Uh,...,U;j—1,Ujs1, ..., Uj—1,Ujipq, ..., Up), is as follows:

B
CU(Ul, ey Uj—1, Ujy g1y« ooy Ujr—1, Ujry U1y - - ,Up)

B
CU,;(u:l’ ey Ug—1y Ujg1y e ey Ugr—1, Ui, - - ,U,p)

n p
ST, ()

i=1 j=1

S T )

i=1 jev

Cguwg (w) =

The NPColmp method we propose requires the use of an indicator of
the symmetry/direction of the asymmetry of the copula CE’,,\U,;(')' We ex-
ploit the concept of radially symmetric copula (see e.g. Nelsen (1993), Nelsen
(2006), and Durante and Sempi (2016)) that involves the survival copula C(-)
associated with a copula C(+) (see Eq. (1)) defined as follows:

C(’U,) = :P(Ulzl—ul,,szl—uj,,Upzl—up)

p
= 1+Z(—1)s Z lemjs(l—Ujl,...,l—UjS)
s=1

1<j1<<gs<n

where C}, ;.(-) denoting the marginal of C(-) related to (ji,...,js). Con-
sequently, the conditional empirical beta survival copula can be defined as
follows:

Ch v, (u) = =—. (5)



Hence we propose the following criterion to assess the radial symmetry (about
1,0.5 where 1, is the all-one vector of dimension (1 x g)) of the copula

élliwp(')' Given a vector ¥ = (Wy,... ¥, ..., Uy) of probabilities in
10,0.5[, we define:

D,=CE u, (qu> _ (561/\%7 (uw)) (6)

where u %« (u‘I’g is the vector w in which each missing uniform number has
been replaced by 0.5+ ¥, (0.5 — ¥,), and we evaluate the radial symmetry

of CEV|UE(-) through the following:

A >0 = CEAUp(') is assumed to be negative asymmetric
Z D,¢=0 = 05V|U,;(') is assumed to be symmetric (about 1,0.5)
a=1 <0 = CSLIUD(') is assumed to be positive asymmetric.

(7)

2.2 The NPColmp algorithm

Here we describe in detail the procedure of the NPColmp by making use
of the preliminaries provided in Section 2.1. Suppose you have a (n x p)-
dimensional data matrix X:

11 ... Tij5 ... Tip Ty
X=1z Tij Tip | = | @i
Tnl -+ Tpj --- Tnp Ly,

whose corresponding pseudo-observations matrix is the following (n x p)-
dimensional matrix U:

Ui Uy Uyp Uy
U= Us1 Usj (27 = u;
Unl .- Upj ... Unp u,

We define X¢ as an (n. x p)-dimensional submatrix of X that contains only
the complete observations, where n. < n and n, represents the number of
complete rows. U¢ is the corresponding submatrix of U. Given a vector



of observations x;, where the subvector x;, = (zj)je, € R consists of
missing values, with v C {1,...,p} (where |v| = ¢ < p) denoting the set of
indices corresponding to the variables in X that contain missing values in
X. We impute x;, by using the corresponding vector of pseudo-observations
Wiy = (uij)jer € R given w;p = (wi5)jen € RP=9 (where 7 C {1,...,p} \ v
and |v| = p — q) through the following procedure.

Given a row vector x; with missing values at positions v (where v has
length ¢) and its corresponding pseudo-observations vector u;, we

1. estimate nonparametrically the conditional copula of the missing vari-
ables given the available ones through the conditional empirical beta
copula CSV\U,;(') in Eq. (4) and its survival version Cguan<') in Eq. (5)
using the complete pseudo-observations in U¢;

2. evaluate the radial symmetry/asymmetry of Og,,\U,;(') by exploiting
Eqs. (6)-(7);

3. impute u;, through w}, € [0,1]9 whose values depend on the radial
(a)symmetry of the conditional empirical beta copula; specifically:

- if CEVWD(-) is assumed to be symmetric about 1,0.5, then u}, =
1,0.5

- if C’EHUE(-) is assumed to be negative asymmetric, then u}, =

1, (0.5 — arg max Da)
Vg
- if CEHUE(-) is assumed to be positive asymmetric, then u}, =
1, (0.5 + arg max Da)

Ve

where 1, is the all-one vector of dimension (1 X ¢);
4. obtain the imputed vector @; by merging w;; and u},;

5. compute the dissimilarity between u; and each row of the complete
data matrix U¢ through an appropriate dissimilarity measures d. .,
e.g. Kendall-based correlation measures, Gower’s index, Euclidean,
Manhattan and Canberra distances; then, select the K rows of pseudo-

observations that minimize the computed dissimilarities, say (u§, ..., ug, ..
and the corresponding complete observations (x§, ..., x5, ..., %) in
XC.

b

10

S ub)

T

)



K
1
6. impute each missing value in x;, through the following: x7; = T Z Thijs
k=1

* .
wr

by varying j in v, thus obtaining @

* .
w)

7. obtain the imputed vector '™ by merging x;; and x
8. compute the pseudo-observations of ™, say u™, which can be inter-
preted as an element of the lower-orthant quantile (see e.g. Embrechts

and Puccetti (2006)), and its ‘order’ oy given by CEU‘UD (ul™).

To clarify the procedure of the proposed method we provide its algorithm in
the box Algorithm 1. It is worth noticing that: (¢) in principle, empirical
copula functions other than the beta can be used, i.e. the empirical checker-
board copula (see Segers et al. (2017) and the references therein); this is
technically feasible since it has been implemented in the CoImp package; (i7)
the range and the number of values in ¥ can have an impact on the imputa-
tion results (see simulation results in Sect. 3); (iii) setting all missing values
equal to (0.5 + ¥, ) when selecting values for imputation may be restrictive,
but it helps to reduce the computational burden of the developed method.

3 Monte Carlo study

In this section we carry out a simulation study to assess the performance
of the NPColmp method versus other imputation methods. Precisely, we
compare our proposal with the following imputation methods: HD (see
e.g. Kalton and Kasprzyk (1982), Fuller and Kim (2005)), also called donor
imputation, kNN (Kowarik and Templ (2016)), PMM (see e.g. Rubin (1986),
Little (1988)), and Colmp (Di Lascio et al. (2015)). All the competitor
methods considered are (i) developed in a single imputation context, (i7)
feasible for continuous variables and missing of any pattern and dimension,
(7i) generally based on the assumption of MCAR data (i.e. data in which
the missingness of a response is unrelated to both its unknown value and
observed data).

As for the hot-deck imputation method, each missing value is replaced
with the complete response most similar to the missing one based on the
Euclidean distance and called donor. In cases where there is more than one
unit with minimum distance, the donor is randomly selected in the so-called
donor pool (Rubin (2004)). The kNN imputation method is again based on
a donor observation but, differently from the HD method, the missing value
is imputed through an aggregation of its nearest neighbors (five in our case).
Here, the distance between two observations, 7 and 4/, is computed though
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Algorithm 1 The NPColmp algorithm

1:

2:

10:

11:
12:
13:

14:

15:

16:

Input: X the (n x p)-dimensional data matrix with missing values, M
the total number of single missing values, ¥ an A-dimensional vector
of values in |0,0.5[, d(..y a dissimilarity measure, and K the number of
dissimilarities to select for the imputation.

Output: The (n x p)-dimensional imputed data matrix X™ and the
vector of probabilities av corresponding to the lower-orthant quantiles
used for imputation.

Compute U as the probability integral transforms (pseudo-observations)
of X

fori=1,...,ndo
[=0
if @; contains missing value(s) then
l=1+1
select the corresponding u;;
set v C {1,...,p} as the set of indices corresponding to the ob-
served variables containing missing value(s) in @; and u;;
set |v| = ¢ the number of single missing values in x; and w;, i.e.
the dimension of the multivariate missing values;
A
compute Z D,, where D, is given in Eq. (6) that exploits Eq. (4);
=1
N a
if Z D, =0 then
a=1
CllilUp(') is assumed to be symmetric;
uy, = 1,0.5;
else
A
if Y D, >0 then
a=1
ngwp( -) is assumed to be negative symmetric;
uy, =1, <O.5 — arg max Da>;
Uq

12



Algorithm 1 The NPColmp algorithm (continued)

17: else
A
18: if Y D, <0 then
a=1
19: OE,,\U,;(') is assumed to be positive symmetric;
20: uy, =1, (0.5 + arg max Da) ;
Y,

21: end if
22: end if
23: end if
24: set u; = (U}, uip);
25: compute dg, ), by varying ¢ in (1,...,n.) (i.e. for each row in

Ue);
26: select (u$, ..., ug,..., u%)" minimizing the computed dissimilar-

ities, and the corresponding (x5, ..., x¢, ..., %) in X¢

1 & 1 &
27 impute x;, through «}, = (E Z Ty 174 Z $2q> ;
k=1 k=1
28: obtain the imputed vector ™ = (x},, ;5 );
29: store =™ in the i-th row of X™;
30: compute the pseudo-observation of ™ say ™, and
5 A

OUV|U5('UJ§m) = .
31: end if
32: end for

33: Obtain X'™ and a.

13



an extension of the Gower distance (Gower (1971)) and it is given by the
following weighted mean of the contributions of each variable:

21 Wb,
Z?:l w]
where w; is the weight associated to the j-th variable and ¢;;/; is the contri-

bution of the j-th variable to the distance between observations ¢ and ¢ that
can be computed as:

diiny = (8)

s — LT =i |
T

where z;; and z;; are the values of ¢ and ' on the j-th variable that has range
ri. As 0405 € [0,1], Vi, 7', j, diiry € [0,1]. The PMM imputation method es-
timates on the complete data a multivariate linear regression model for each
variable with missing values: the latter is used as dependent variable, while
the others observed variables are used as covariates. The missing value is
replaced with the observed value that corresponds to the closest predicted
mean, randomly selected from a small set of nearby candidate donors (five
in our case). Finally, as for the Colmp, we set 0.5 the values for the nearest
neighbour component of the smoothing parameter for the local likelihood es-
timator and we let the Colmp method selects automatically the most suitable
copula model among the Elliptical and Archimedean copula families and their
rotated version (Nelsen (2002); Brechmann and Schepsmeier (2013)). The
Colmp is the most interesting competitor of our proposal since it is based on
copulas and on the conditional distribution of the missing observations given
the available ones. Our main purpose is, indeed, to propose an imputation
method that, while still based on conditional copulas, allows for an expanded
and unconstrained set of multivariate dependence structures for the DGP, is
faster than Colmp, and outperforms it. Finally, for the NPColmp method,
we set ¥ = {0.050,0.051, ...,0.449,0.450}, use the Gower distance in Eq. (8)
with unit weights, and set the number of distances used for imputation to
10% of n.

We perform a large simulation study using two different DGPs and by
varying several parameters. Specifically, we generate data from i) a mix-
ture copula composed by a three-variate Clayton copula and a three-variate
rotated-Gumbel copula, with uniform margins X;, for j = 1,2,3 and i) a
mixture copula with two components given by a four-variate Frank and a
rotated Frank copulas, with uniform margins X, for j = 1,2,3,4. An ex-
ample of a sample generated from the two considered DGPs is provided in
Fig. 1. We generate a random sample from each of the above described DGP
by varying
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0.00 0.25 0.50 0.75 1.00 0.000.250.500.751.00

Figure 1: Scatter plots (upper triangular), contour plots (lower triangular),
and density functions (the diagonal) for the three-mixture copula DGP with
a Clayton and rotated-Gumbel copulas (left panel), and for the four-variate
mixture copula DGP with a Frank and a rotated Frank copulas (right panel),
with 7 = 0.75. Sample size n = 500.

1. the dependence parameter of each copula model in the mixture such
that the Kendall’s 7 = 0.25,0.50, 0.75;

2. the sample size n = 50, 250, 500.

We then introduce artificial MCAR values into each of the generated data
set by varying the number of multivariate missing data, i.e. matrix rows
with missing values, in (0.20n,0.40n). It is worth noticing that the total
number of single missing values M can vary in each replication since we
set the number of matrix rows with multivariate missing value and not the
number of single missing values. Next, we apply the five methods described
above to the data set as to obtain the M imputed (single) observations, say
™ m =1,..., M. The number of replications H is set to 500 in order to
take into account the source of variability deriving from the randomness of
the mechanism of generation of the missing data. Finally, the goodness of
the imputation methods is assessed by means of the following performance
measures that compare the imputed dataset with the original one in terms

of microdata and dependence structure:

1. the mean absolute error (MAE hereafter)

1 &1 E
MAE = — — x’,,’f—:vﬁf ;
n [ e -

m=1
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where 2™ is the m-th value imputed through the method considered
and 2% is the observed value;

. the unscaled mean bounded relative absolute error (UMBRAE here-
after)

1 H 1 M |x7,m . IOb
UMBRAE = — — i i
o [ 2 ot - e el

where ™ is the m-th (single) value imputed through the method under
consideration, z™ten is the m-th value imputed by using the benchmark
method, which is the Colmp imputation method in our case, and %
is the corresponding observed value; hence, when UMBRAE = 1, the
method considered performs roughly the same as the Colmp imputa-
tion method; when UMBRAE < 1, the method considered performs
roughly (1 — UMBRAE)% better than the benchmark method; when
UMBRAE > 1, the method considered is roughly (UMBRAE — 1)%
worse than the benchmark method (see Chen et al. (2017) for details);

. the relative bias (RB hereafter) and the relative root mean squared
error (RRMSE hereafter) for the Blomqvist’s beta introduced by Nelsen
(2002):

H /3 H /3 2
RBﬁ:%hZ‘T(ﬁhﬁ_ﬁ); RRMSE; = é;(ﬁhﬁ_ﬁ) (9)

where 3, which takes value in [—1,1], is the true value of the multi-
variate Blomqvist’s beta, i.e the multivariate version of medial corre-
lation coefficient, and Bh is its estimated value for the h-th simulated
sample. More in detail, let U be a p-dimensional random vector of
uniform [0, 1] variables with p-copula C(-) and survival p-copula C(+),
then the multivariate version of Blomqvist’s beta in terms of p-copulas
(see Ubeda-Flores (2005)), denoted by 8, ¢ is given by:

_2r70(1/2) + C(1/2)] — 1
Prc = w11

and it is such that (5, = 0 when C(-) is the distribution of inde-
pendent random variables and 5, = 1 for perfect positive depen-
dence. We specify that, for each simulated scenario, in the calculation
of Egs. (9), B denotes the Blomqvist’s coefficient estimated before in-
troducing missing values, i.e. from the originally drawn data matrix,
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while Bh represents the Blomqvist’s coefficient estimated after imputa-
tion, i.e. from the imputed data matrix.

For the mixture copula composed by a three-variate Clayton copula and a
three-variate rotated-Gumbel copula, we also evaluate the performance of
the NPColmp method by varying ¥. We consider four different sets of val-
ues for ¥: from 0.050 to 0.450 with sequence increments of 0.01 and 0.001,
and from 0.010 to 0.490 with sequence increments of 0.01 and 0.001; in such
cases we set 7 = 0.50, n = 250, H = 500 and the number of multivariate
missing data equal to 0.2n. In addition, for a more comprehensive assess-
ment of NPColmp’s performance, we illustrate its computational efficiency
by computing the relative process time (RPT hereafter) used by the imputa-
tion methods investigated throughout this manuscript. The RPT is defined
as the CPU time in seconds required for the imputation of 0.4n with n = 500
multivariate missing values (i.e. matrix rows with missing value(s)) divided
by CPU time required when the number of multivariate missing data is 0.2n.
The DGP here is again the three-variate mixture of Clayton and rotated-
Gumbel copulas with 7 = 0.50.

Tables 1, 2, and 3 show the results of the simulations for the Clayton and
rotated-Gumbel mixture model with three margins. Considering low depen-
dence level (7 = 0.25), NPColmp overcomes all the other considered methods
in terms of both MAE, RBs and RRMSEjg, and irrespective of the number
of missing data in all the scenarios. Coherently, our proposal always outper-
forms the benchmark method, i.e. Colmp (see the values of UMBRAE in
Tab. 1). In the scenarios with mild and high dependence (i.e. 7 = (0.5,0.75)),
NPColmp appears to be the best method for imputation in terms of preser-
vation of the dependence structure; in fact, both RBg and RRMSEg show
the lowest values regardless of the sample size and the number of multi-
variate missing values. Regarding the MAE, our proposal outperforms all
other methods but kNN in all considered scenarios (with the exception of a
case where 7 = 0.50, n = 50 and few missing values, in which our method
performs better). Finally, the NPColmp algorithm outperforms Colmp but
seems to be slightly worse when the dependence is high (7 = 0.75) and the
sample size is small (n = 50).

Tables 4, 5, and 6 show the results of the simulations for a four-variate
rotated-Frank and Frank copula mixture model. When the dependence is
low or mild, we can draw the same conclusions as when Clayton and rotated-
Gumbel mixture copula model was used as DGP in terms of measures of
dependence and almost the same conclusions in terms of MAE. When the de-
pendence is high, the proposed method is again the best one to preserve mul-
tivariate dependence, except in cases when the sample size is large (n = 500)
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.408 0.496  0.422 0.445 0.481
UMBRAE 0.2n 0.976 1.128  1.001 1 1.088
RBg ’ -0.686 -0.847 -0.805 -0.815 -0.802
RRMSEg 0.757 0.898  0.885 0.871 0.863
MAE 0.411 0.496 0.416 0.429 0.482
UMBRAE 0.4n 0.988 1.129  0.997 1 1.100
RBg ' -0.648 -0.874 -0.792 -0.782 -0.794
RRMSEg 0.743 0.929 0.904 0.841 0.877

n = 250
MAE 0.399 0.498 0.415 0.433 0.483
UMBRAE 0.2n 0.968 1.115  0.967 1 1.086
RBg ' -0.593 -0.791 -0.746 -0.761 -0.753
RRMSEg 0.606 0.799 0.763 0.771 0.764
MAE 0.404 0.502 0.416 0.433 0.484
UMBRAE 0.4 0.970 1.124  0.976 1 1.081
RBg ) -0.605 -0.818 -0.719 -0.755 -0.755
RRMSEg 0.625 0.828  0.754 0.769 0.770

n = 500
MAE 0.396 0.498 0.411 0.434 0.483
UMBRAE 0.2n 0.953 1.112  0.965 1 1.081
RBg ’ -0.580 -0.779 -0.717 -0.744 -0.740
RRMSE3 0.587 0.783  0.725 0.749 0.746
MAE 0.401 0.500 0.414 0.434 0.482
UMBRAE 0.4n 0.962 1.117  0.965 1 1.077
RBg ’ -0.608 -0.821 -0.697 -0.746 -0.741
RRMSEg 0.619 0.825 0.713 0.753 0.749

Table 1: Simulation study results for the three-variate Clayton and rotated-
Gumbel mixture copula, as defined in the text with 7 = 0.25: performance
measures of the NPColmp method compared to other imputation methods.

and there are many missing values (0.4n). Nonetheless, NPColmp overcomes
the Colmp (see values of UMBRAE in Tabs. 4, 5, and 6 ), but it seems to
be slightly worse in scenarios with high dependence and few missing val-
ues regardless of the sample size. In terms of MAE, under low dependence
(1 = 0.25), NPColmp achieves the best imputation accuracy, except when
n = 50 and the percentage of missing values is high, where kNN outperforms
all methods. Under mild dependence, kNN outperforms NPColmp, while un-
der high dependence, both kNN and PMM achieve better performance than
our proposed method. The latter result may be due to the fact that the com-
ponents of the copula mixture are symmetric, making standard methods less
sensitive to complexity. Overall, we can conclude that NPColmp performs
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.380 0.493  0.381 0.432 0.438
UMBRAE 0.2n 0.974 1.173  0.947 1 1.056
RBg ’ -0.493 -0.650 -0.572 -0.591 -0.585
RRMSEg 0.539 0.689  0.626 0.637  0.629
MAE 0.387 0.497 0.383 0.418 0.433
UMBRAE 0.4n 0.985 1.187  0.964 1 1.043
RBg ' -0.493 -0.712 -0.606 -0.597 -0.585
RRMSEg 0.565 0.754  0.693 0.653 0.643

n = 250
MAE 0.373 0.502  0.368 0.418 0.434
UMBRAE 0.2n 0.964 1.196  0.920 1 1.036
RBg ' -0.432 -0.621 -0.545 -0.561 -0.557
RRMSEg 0.441 0.627  0.556 0.569 0.565
MAE 0.376 0.499 0.364 0418 0.431
UMBRAE 0.4 0.959 1.176  0.898 1 1.027
RBg ) -0.468 -0.677 -0.507 -0.551 -0.553
RRMSEg 0.488 0.684 0.535 0.562 0.565

n = 500
MAE 0.373 0.499 0.363 0.420 0.432
UMBRAE 0.2n 0.956 1.181  0.895 1 1.027
RBg ’ -0.436 -0.611 -0.526 -0.548 -0.551
RRMSE3 0.442 0.614 0.533 0.552 0.556
MAE 0.376 0.498 0.361 0.420 0.430
UMBRAE 0.4n 0.959 1.172  0.882 1 1.024
RBg ’ -0.478 -0.676 -0.497 -0.543 -0.552
RRMSEg 0.489 0.679  0.512 0.549 0.559

Table 2: Simulation study results for the three-variate Clayton and rotated-
Gumbel mixture copula, as defined in the text with 7 = 0.50: performance
measures of the NPColmp method compared to other imputation methods.

satisfactorily, in terms of preservation of both microdata and dependence.
Table 7 presents the performance of the NPColmp method by varying
V. Including extreme values in W appears to have a slightly negative impact
on the method’s performance in terms of both dependence measures and
MAE. On the contrary, increasing the number of values considered for ¥
enhances NPColmp’s performance in terms of microdata preservation. In
addition, the choice of ¥ does not seem to affect NPColmp’s performance
relative to Colmp, which is consistently outperformed by NPColmp across all
evaluated performance measures. In conclusion, ¥ has a slight impact on the
imputation performance, and the selection of ¥, values should primarily be
guided by the specific objectives of the analysis and computational resources.
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.349 0.492  0.333 0.398 0.361
UMBRAE 0.2n 1.033 1.354 0.927 1 1.009
RBg ’ -0.353 -0.516 -0.436 -0.447 -0.437
RRMSEg 0.390 0.545 0.479 0.487 0471
MAE 0.351 0.500  0.350 0.393 0.362
UMBRAE 0.4n 1.017 1.359 0.973 1 0.994
RBg ' -0.371 -0.608 -0.504 -0.449 -0.436
RRMSEg 0.438 0.638  0.570 0.506 0.487

n = 250
MAE 0.334 0.503  0.315 0.391 0.361
UMBRAE 0.2n 0.979 1.357  0.869 1 0.970
RBg ' -0.311 -0.499 -0.419 -0.413 -0.415
RRMSEg 0.320 0.505  0.430 0.421 0.423
MAE 0.332 0.499 0.297  0.388 0.358
UMBRAE 0.4 0.978 1.360 0.815 1 0.973
RBg ) -0.310 -0.588 -0.395 -0.405 -0.419
RRMSEg 0.331 0.593 0417 0419 0.430

n = 500
MAE 0.329 0.498  0.296 0.388 0.357
UMBRAE 0.2n 0.975 1.359  0.807 1 0.972
RBg ’ -0.298 -0.494 -0.403 -0.402 -0.416
RRMSE3 0.303 0.497  0.409 0.405 0.420
MAE 0.329 0.501  0.293 0.390 0.357
UMBRAE 0.4n 0.959 1.353  0.772 1 0.965
RBg ’ -0.279 -0.582 -0.380 -0.393 -0.418
RRMSEg 0.292 0.584  0.392 0.399 0.424

Table 3: Simulation study results for the three-variate Clayton and rotated-
Gumbel mixture copula, as defined in the text with 7 = 0.75: performance
measures of the NPColmp method compared to other imputation methods.

Finally, Table 8 shows estimates of the relative process time (RPT hereafter)
used by the imputation methods investigated throughout this manuscript.
Our proposal turns out to be considerably faster than Colmp and competitive
with respect to the other imputation methods considered. Although slightly
slower than HD and PMM, NPColmp exhibits less standard error, confirming
a favorable trade-off between speed and stability. This suggests that our
method can be suitable also for datasets with a high number of missing
values that nowadays are often encountered in large surveys and big data
analytics.
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.533 0.664 0.547  0.579 0.634
UMBRAE 0.2n 0.970 1.137  0.976 1 1.094
RBg ’ -0.494 -0.677 -0.584 -0.619 -0.621
RRMSEg 0.577 0.742 0.678 0.687  0.694
MAE 0.555 0.664  0.551 0.571 0.635
UMBRAE 0.4n 0.999 1.132  0.986 1 1.086
RBg ' -0.423 -0.721 -0.610 -0.680 -0.636
RRMSEg 0.564 0.788  0.729 0.763 0.725

n = 250
MAE 0.526 0.665  0.543 0.571 0.634
UMBRAE 0.2n 0.954 1.121  0.963 1 1.073
RBg ' -0.364 -0.597 -0.538 -0.583 -0.553
RRMSEg 0.384 0.607  0.555 0.593 0.566
MAE 0.543 0.666  0.550 0.574 0.637
UMBRAE 0.4 0.965 1.108  0.964 1 1.066
RBg ) -0.290 -0.665 -0.517 -0.617 -0.566
RRMSEg 0.338 0.677  0.552 0.630 0.584

n = 500
MAE 0.526 0.664  0.548 0.572 0.637
UMBRAE 0.2n 0.949 1.107  0.961 1 1.069
RBg ’ -0.338 -0.594 -0.532 -0.567 -0.543
RRMSEg 0.349 0.598  0.541 0.572 0.548
MAE 0.542 0.667  0.551 0.576 0.636
UMBRAE 0.4n 0.962 1.111  0.961 1 1.063
RBg ’ -0.265 -0.659 -0.482 -0.609 -0.549
RRMSEg 0.296 0.665 0.507  0.615 0.557

Table 4: Simulation study results for the four-variate rotated-Frank and
Frank mixture copula, as defined in the text with 7 = 0.25: performance
measures of the NPColmp method compared to other imputation methods.

4 Real data applications

In this section, we apply the NPColmp method to two empirical case studies,
both related to the environmental impact of agriculture. Specifically, the
first application concerns the use of plant protection products to control
crop diseases, while the second focuses on air pollutants originating from the
agricultural sector.

4.1 The first case study: plant protection products

Here we assess the performance of the NPColmp method to impute miss-
ing values in data concerning the plant protection products distributed by
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.495 0.664  0.485 0.560 0.548
UMBRAE 0.2n 0.952 1.191  0.907 1 1.008
RBg ’ -0.306 -0.439 -0.333 -0.377 -0.355
RRMSEg 0.363 0.473  0.388 0.421 0.402
MAE 0.519 0.662 0.494  0.556 0.554
UMBRAE 0.4n 0.981 1.181  0.928 1 1.008
RBg ' -0.285 -0.549 -0.397 -0.427 -0.373
RRMSEg 0.380 0.589  0.472 0.488 0.438

n = 250
MAE 0.503 0.663  0.488 0.564 0.553
UMBRAE 0.2n 0.948 1.147  0.896 1 0.981
RBg ' -0.251 -0.411 -0.326 -0.350 -0.328
RRMSEg 0.265 0.418 0.336 0.357  0.335
MAE 0.514 0.663  0.482 0.566 0.550
UMBRAE 0.4 0.952 1.143  0.881 1 0.968
RBg ) -0.273 -0.509 -0.331 -0.393 -0.334
RRMSEg 0.300 0.516  0.358 0.404 0.347

n = 500
MAE 0.503 0.664  0.478 0.569 0.553
UMBRAE 0.2n 0.938 1.136  0.871 1 0.969
RBg ’ -0.237 -0.407 -0.309 -0.353 -0.319
RRMSE3 0.245 0.410 0.317 0.357  0.323
MAE 0.512 0.666 0.473 0.569 0.550
UMBRAE 0.4n 0.943 1.142  0.861 1 0.964
RBg ’ -0.257 -0.504 -0.277 -0.395 -0.328
RRMSEg 0.278 0.507  0.296 0.400 0.334

Table 5: Simulation study results for the four-variate rotated-Frank and
Frank mixture copula, as defined in the text with 7 = 0.50: performance
measures of the NPColmp method compared to other imputation methods.

companies for agricultural use. In the last years, there is a lot of discussion
on plant protection products, which are mixtures of active substances widely
used for the protection of plants, plant products or crops from harmful agents,
and their use in agriculture to control pests and diseases and, in turn, reduce
crop losses. However, the use of these compounds, commonly known as “pes-
ticides”, has a strong impact not only on humans for which represent a poten-
tial risk to his health, but also on the environment and its biota, as they are
highly toxic and persistent. Despite being economically accessible, fast acting
and easy to handle, their negative influence on humans and the environment
has led to the search for effective alternatives that are more sustainable and
respectful of nature. On 22 June 2022 the Commission published its Commu-
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Performance Nu}rn.. of multiv. NPColmp HD KNN  Colmp PMM
measures missing values

n = 50
MAE 0.451 0.662  0.405 0.512 0.434
UMBRAE 0.2n 1.016 1.391  0.863 1 0.933
RBg ’ -0.212 -0.343 -0.228 -0.251 -0.231
RRMSEg 0.254 0.370  0.264 0.288 0.266
MAE 0.466 0.661  0.428 0.520 0.439
UMBRAE 0.4n 0.998 1.329  0.898 1 0.914
RBg ' -0.224 -0.467 -0.315 -0.301 -0.234
RRMSEg 0.292 0.500 0.371 0.361 0.284

n = 250
MAE 0.454 0.662  0.408 0.504 0.427
UMBRAE 0.2n 1.013 1.348  0.870 1 0.896
RBg ' -0.180 -0.316 -0.234 -0.220 -0.204
RRMSEg 0.191 0.321  0.242 0.227  0.210
MAE 0.456 0.660  0.392 0.512 0.431
UMBRAE 0.4 0.990 1.324  0.830 1 0.894
RBg ) -0.225 -0.435 -0.255 -0.245 -0.216
RRMSEg 0.249 0.440  0.276 0.256 0.224

n = 500
MAE 0.460 0.667  0.393 0.509 0.428
UMBRAE 0.2n 1.011 1.343  0.833 1 0.891
RBg ’ -0.175 -0.311  -0.221 -0.216  -0.203
RRMSEg 0.182 0.314  0.226 0.220 0.205
MAE 0.459 0.665  0.372 0.511 0.430
UMBRAE 0.4n 0.992 1.330 0.781 1 0.890
RBg ’ 0.230 -0.428 -0.208 -0.233 -0.210
RRMSEg 0.242 0.431  0.226 0.239 0.214

Table 6: Simulation study results for the four-variate rotated-Frank and
Frank mixture copula, as defined in the text with 7 = 0.75: performance
measures of the NPColmp method compared to other imputation methods.

v MAE UMBRAE RBg RRMSEg

0.050, 0.060, . ..,0.440,0.450) | 0.3739  0.9665  -0.4303  0.4395
0.050,0.051, ...,0.449,0.450) | 0.3735  0.9645  -0.4319  0.4412
0.010, 0.020, ...,0.480,0.490) | 0.3740  0.9565  -0.4669  0.4759
0.010,0.011, ...,0.480,0.490) | 0.3737  0.9694  -0.4684  0.4773

A/_\,_\/.\
~— | — | ——

Table 7: Simulation study results for a three-variate Clayton and rotated-
Gumbel mixture copula, as defined in the text with 7 = 0.50, n = 250,
and the number of multivariate missing data equals to 0.2n: performance
measures of NPColmp by varying W (see the text for details).
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NPColmp HD kNN Colmp PMM
RPT 1.712 1.179 1.771  3.757  1.073
SE 0.027 0.057 0.046 1.368  0.057

Table 8: Monte Carlo estimate of the relative process time (RPT) for H = 50
samples of size n = 500 from a three-variate Clayton and rotated-Gumbel
mixture copula with 7 = 0.50 and 0.4n multivariate missing values and its
standard error (SE). The RPT is the CPU time required for the imputation of
0.4n multivariate missing values divided by CPU time when the multivariate
missing values are 0.2n.

nication 305/2022 proposing a new regulation under the Farm to Fork Strat-
egy (Communication 381,/2020) to take action to cut by 50% the overall use of
plant protection products by 2030. In Italy, about 150,000 tons/year of plant
protection products are used (for more details, see the Permanent Censuses
Agriculture of the Italian National Statistical Institute, ISTAT hereafter;
https://www.istat.it/it/censimenti-permanenti/agricoltura). Im-
puting with reliable values is particularly relevant for the assessment of the
pesticides use trends and potential cases of excessive or extreme usage, and
the evaluation of the impact of new regulations aimed at reducing the use of
environmentally and human-harmful products.

Here we consider data provided by the ISTAT (http://dati.istat.it/)
and concerning the 106 Italian provinces observed in 2021. Specifically, we
analyze three variables that are the substances or active ingredients con-
tained in plant protection products (in Kg): insecticides, i.e. pesticides
against harmful insects and mites, herbicides, i.e. pesticides against weeds,
and other plant protection products, i.e. pesticides with various active in-
gredients (including organic substances) versus other harmful organisms.
The Kendall’s correlation coefficient of each pair of the variables consid-
ered, which ranges from 0.578 to 0.675, and the scatter plots showed in
Fig. (2) support the use of an imputation method that accounts for the
complex dependence structure of the DGP. As in the simulation study, we
set ¥ = (0.050,0.051,...,0.449,0.450), artificially introduce MCAR missing
values, and vary the number of multivariate missing data in (20%,40%) of
the sample size n. We then compare the performance of NPColmp with the
imputation methods considered in Section 3, using the performance measures
defined therein. Note that in the case of 40% multivariate missing values,
we excluded replications h = 150,395 from the results because Colmp im-
putes using exactly the same observed value, leading to a 0/0 value for the
UMBRAE.

Table 9 shows the imputation results. Regardless of the percentage of
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Figure 2: Scatter plots (lower triangular) and density functions (the diagonal)
of variables related to plant protection products. See the text for details.

Num of multiv. Performance NPColmp D KNN Colmp PMM
missing values Measure
MAE 221829.9 391218.6 256815.9 328128.1 310289.4
0.2x 106 UMBRAE 0.727 1.192 0.832 1 0.920
RBg -0.082 -0.223 -0.138 -0.212 -0.145
RRMSEg 0.092 0.229 0.147 0.219 0.155
MAE 228216.3 390333.7 231303.3 363665.2 315172.8
0.4%x106 UMBRAE 0.793 1.123 0.697 1 0.891
RBg -0.199 -0.352 -0.103 -0.340 -0.199
RRMSEg 0.215 0.359 0.141 0.348 0.221

Table 9: Imputation performance on data concerning the plant protection
products (see text for details): NPColmp versus the imputation methods
described in Section 3, evaluated based on the performance measures defined

therein.

missing values introduced, the NPColmp algorithm performs better than
all the other methods considered in preserving microdata. In addition, it

outperforms the Colmp in both the considered scenarios.

Moreover, the

NPColmp appears to be the best method while preserving the dependence
structure when the percentage of missing values is low. However, in the case
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of 40% multivariate missing values, the kNN method outperforms NPColmp
in terms of RBs and RRMSEg, coeherently with the simulation results.

4.2 The second case study: air quality

Here we present a case study related to the role of the agricultural sector
on air quality. The Italian region Lombardia is one of the most polluted
in Europe due to poor air circulation and high emission levels. Air pol-
lutants may be categorised as primary or secondary. Primary pollutants
are directly emitted to the atmosphere, whereas secondary pollutants are
formed in the atmosphere from precursor gases through chemical reactions
and microphysical processes. Ammonia in one of the key precursor gases for
secondary particulate matter (PM hereafter). This is true for both large PM
with aerodynamic diameter less than 10um and fine PM with aerodynamic
diameter less than 2.5um. In Europe, around 90% of ammonia emissions
(source: European Environmental Agency) and in Lombardia up to 97% of
ammonia emissions originate from the agricultural sector (source: Regional
Environmental Protection Agency, ARPA hereafter). The ammonia reacts
with nitric acid and the product of that reaction can contribute up to 60%
of the PM with aerodynamic diameter less than 10um mass concentration
(source: ARPA Lombardia).

We here analyze five daily time series concerning the concentrations of
particles, such as the dioxides of nitrogen, and the emissions of ammonia
for agricultural soils and agricultural waste burning in the Italian region
Lombardia and its neighbourhood. The data have been provided by the
AgrlmOnlA — Agriculture Impact On Italian Air project (see, https://
agrimonia.net/) and the open-access spatio-temporal dataset is available
at https://zenodo.org/records/7593803. In detail, ARPA Lombardia
(https://www.arpalombardia.it/) provided hourly measurements of the
following variables for Lombardia sensors network:

PMy: the concentration of particles with an aerodynamic diameter of less
than 10 micrometers (um) expressed in pg/m?;

PM, 5: the concentration of particles with an aerodynamic diameter of less
than 2.5 micrometers (um) expressed in pug/m?;

NO,: the concentration of dioxide of nitrogen expressed in pg/m?>.

Copernicus Atmosphere Monitoring Service (CAMS hereafter) global emis-
sion inventories (see https://www.copernicus.eu) provided the data for
the emissions of ammonia data originating from agriculture sector, i.e. the
following variables:

26


https://agrimonia.net/
https://agrimonia.net/
https://zenodo.org/records/7593803
https://www.arpalombardia.it/
https://www.copernicus.eu

NH;3-Soils: the emissions of ammonia originating from the agriculture soils
expressed in mg/m?;

NH;-Waste: the emissions of ammonia originating from the burning of agri-
culture waste expressed in mg/m?.

The data have been detected by S = 141 ground-level monitoring stations,
irregularly located over the considered land in 2020. The whole land includes
93 stations within the Lombardia region and 48 stations in the neighbour-
ing area, obtained by applying a 0.3° buffer over the regional borders. This
buffer encompasses from the following Italian regions: Piemonte, Veneto,
Liguria, Emilia Romagna, Trentino-Alto Adige, and Ticino. Before applying
the imputation methods to the five variables/series considered, we removed
the serial dependence within each of the 5 hourly time series considered that
concern the period from January 1st, 2020 to December 31st, 2020. Next, a
suitable SARIMA(p, d, q)(P, D, @Q)s; model has been identified for each time
series according to the Akaike Information Criterion. In addition, for the
variable NO, a seasonal difference operator of order 1 has been applied
to remove seasonality, as suggested by the inspection of the autocorrela-
tion and the partial autocorrelation functions of the series. The identified
models are an ARIMA(1,1,3) for PMyo, an ARIMA(4,1,1) for PMy5, a
SARIMA(4,0,4)(0,1,0)7 for NOy, an ARIMA(2,2,2) for NH;z-soils, and
an ARIMA(2,2,0) for NHs-waste. The models’ residuals are not autocorre-
lated (we do not reject the null hypothesis of the Student-¢ and the Ljung-Box
tests), but from the scatter plots of the residual time series (Fig. 3) it can
be seen that when the residuals are taken in pairs they exhibit a residual
correlation in some cases. We introduce artificial MCAR multivariate miss-
ing values, vary the number of multivariate missing values in (0.20n,0.40n)
where n = 359, and set ¥ = (0.050,0.051,...,0.449,0.450). Also in this
case study some replications lead to a 0/0 value for the UMBRAE when
considering Colmp and they have been excluded from the simulation results;
specifically, the replication h = 151 in the case of 20% multivariate missing
values, and replications h = 133,286,340 in the case of 40% multivariate
missing values. Table 10 shows the performance of the imputation methods
considered. Regardless of the percentage of missing values, the NPColmp
algorithm appears to be the best method to impute data while preserving
the dependence structure of the DGP: RBg, RRMSEg, and the MAE reach
the lowest values when the NPColmp is used. Notably, NPColmp outper-
forms even kNN, which, by contrast, seemed to perform better in simulations
for microdata preservation. Moreover, the NPColmp outperforms its main
competitor, the Colmp, in all the investigated scenarios.
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Figure 3: Scatter plots (lower triangular) and density functions (the diagonal)
of the residual time series for pollutant concentration variables. See the text

for details.

Num. of multiv.

Performance

.. NPColmp HD kNN Colmp PMM
missing values Measure
MAE 488307.7  788662.2 562284.3 721678.4 569571.9
0.2x359 UMBRAE 0.777 1.068 0.815 1 0.876
RBg -0.124 -0.429 -0.410 -0.471 -0.365
RRMSEg 0.158 0.436 0.419 0.476 0.372
MAE 504770.3  797846.5 557668.4 730865.1 573382.0
0.4%359 UMBRAE 0.795 1.064 0.805 1 0.875
RBg -0.056 -0.502 -0.434 -0.549 -0.367
RRMSEg 0.201 0.513 0.454 0.556 0.382

Table 10: Imputation performance on data concerning pollutant concentra-
tion variables (see text for details): NPColmp versus the imputation methods
described in Section 3, evaluated based on the performance measures defined

therein.

5 Remarks and conclusions

In this paper, we propose a nonparametric imputation method based on
the copula function, called NPColmp. By leveraging the empirical copula,
NPColmp not only preserves the joint structure of the DGP but also maxi-
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mizes flexibility in modelling the multivariate dependence structure. There-
fore, NPColmp is data-driven, has no risk of model misspecification, and it is
able to impute missing data with any pattern and dimension. Additionally,
the proposed imputation algorithm replaces each missing value with a single
guess, identified based on a statistical criterion related to the radial sym-
metry of the conditional copula, in such a way as to mitigate the potential
inaccuracy caused by the randomness of the imputation mechanism.

Using the conditional empirical copula to impute we overcome the two
limits of the Colmp that have been noted in the literature: the slowness
due to the computationally costly Hit-or-Miss Monte Carlo method and the
limited families of copulas that can be used. Moreover, the Monte Carlo
study carried out shows that the NPColmp can outperform well-established
methods, such as HD, kNN, and PMM, particularly in terms of preserving
the dependence structure, which is our primary goal. The application of
the proposed algorithm to two different case studies further confirms the
effectiveness of our method compared to others, in terms of both preserving
microdata and dependence structure.

Regarding future research, an aspect worth investigating is the perfor-
mance of the proposed method for imputing missing in presence of outliers.
This could, indeed, improve the realibility and robusteness of the NPColmp
method making more unbiased the subsequent analyses. In addition, since
in some case studies the assumption of MCAR data can be unrealistic, an
assessment of the NPColmp’s performance under missing at random (MAR)
conditions would be useful. Furtheremore, it might be interesting to compare
our approach with machine learning methods, such as random forests, that
are capable of capturing complex structures in the data and predicting miss-
ing values, albeit at the cost of increased computational demands. Finally,
it is worth commenting on the possible extension of the NPColmp method
within the widely used multiple imputation approach. The main advantage
of multiple imputation is that it accounts for the randomness of imputed val-
ues, thereby improving inferential accuracy. However, our method would not
make sense in the multiple imputation framework, as it does not introduce
randomness in the imputed values. Assuming the use of the empirical beta
copula and the proposed criterion for evaluating the asymmetry of its condi-
tional distribution, the only factor affecting the imputed values is the choice
of ¥, which can be chosen to ensure a certain level of imputation quality.
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