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Abstract

In many real-life processes, data with high positive skewness are very common. Moreover, these data

tend to exhibit heterogeneous characteristics in such a manner that using one parametric univariate

probability distribution becomes inadequate to model such data. When the heterogeneity of such

data can be appropriately separated into two components: the main innovation component, where the

bulk of data is centered, and the tail component which contains some few extreme observations, in

such a way, and without a loss in generality, that the data possesses high skewness to the right, the

use of hybrid models becomes very viable to model the data. In this paper, a new two-component

hybrid model which joins the half-normal distribution for the main innovation of a highly right-skewed

data with the generalized Pareto distribution (GPD) for the observations in the data above a certain

threshold is proposed. To enhance efficiency in the estimation of the parameters of the hybrid model,

an unsupervised iterative algorithm (UIA) is adopted. An application of the hybrid model in modeling

the absolute log returns of the S&P500 index and the intensity of rainfall which triggered some debris

flow events in the South Tyrol region of Italy is carried out.
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1 Introduction

Skewed distributions are common in real-world processes, particularly when extreme values or outliers

significantly influence standard statistical approaches. The analysis of skewed data is critical in various

fields, including finance and insurance (Blum and Dacorogna, 2003; Embrechts et al., 1997; Carreau

and Bengio, 2009; Dacorogna and Kratz, 2015), communication and signal processing (Rangaswamy

et al., 2004; Digham et al., 2007; Broadwater and Chellapa, 2010; Mandava et al., 2011; Sermpezis and

Spyropoulos, 2015) and environmental science (Rossi et al., 1984; Davison and Smith, 1990; Furrer and

Katz, 2008; Singh et al., 2012; Kollu et al., 2012). In many instances, data characterized by high positive

skewness can exhibit heterogeneity, where a single parametric univariate probability distribution falls

short in effectively modeling such data. When dealing with highly right-skewed data, it is necessary

to understand the asymmetry of observed data, which can be decomposed into two or more distinct

components (Osatohanmwen et al., 2024). For the case of two components, the first component is

the main innovation, representing where the bulk of the data is centered, while the second is the tail

component, which captures the few extreme observations above a certain threshold that contribute to

the skewness. Failing to account for this heterogeneity could lead to significant loss in efficiency when

modeling the data. Moreover, The modeling of this type of data has received widespread attention in

recent years and many models/methods have been put forth including non-parametric models (Guillen

et al., 2005) and the Peak over Threshold (PoT) methodology (Pickands, 1975; Davison and Smith, 1990).

While the non-parametric models usually offer good fits to the data, they typically fail to account for

a few outlying observations in the tail. On the other hand, the PoT methodology only focuses on the

extreme observations beyond a certain threshold while ignoring the rest observations in the data and thus

does not make use of the entire distribution.

Given these challenges, hybrid models have emerged as effective solutions for modeling complex dis-

tributions. A hybrid model combines two or more probability distributions to adequately fit the char-

acteristics of observed data. Several families of two-component hybrid models have been defined and

studied in the literature (Cooray and Ananda, 2005; Scollnik, 2007; Carreau and Bengio, 2009; Cooray,

2009; Cooray et al., 2010; Singh et al., 2012; Scollnik and Sun, 2012; Nadarajah and Bakar, 2014; Bakar

et al., 2015). In this paper paper, a new two-component hybrid model for data exhibiting high skewness

to the right is introduced. The model links a half-normal distribution and a GPD at a certain threshold

point determined when imposing a condition of class C1 (Carreau and Bengio, 2009; Debbabi and Kratz,
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2014). Furthermore, the two components of the hybrid distribution are weighted non-uniformly and an

unsupervised iterative and convergent estimation scheme based on the Levenberg-Marquardt (L-M) al-

gorithm (Levenberg, 1944; Marquardt, 1963) is adopted to estimate the threshold point and in addition,

other free parameters of the two-component model. In standard PoT methodology, this threshold point

is usually estimated graphically whereas in this framework it is a parameter to be estimated in the hybrid

model. This allows us to determine the point beyond which the extremes are observed algorithmically.

In Section 2, the specification of the two-component non-uniform weights hybrid model framework

and the half-normal-GPD model is carried out. A description of the UIA for the estimation of the hybrid

model’s free parameters is presented in Section 3. Results from numerical studies based on Monte Carlo

simulations conducted to assess the UIA’s efficiency in estimating the hybrid model’s parameters are

reported in Section 4. In Section 5, the application of the new hybrid model in fitting the absolute log

returns data of the S&P500 index and the data on the intensity of rainfall that triggered some debris

flow events in the South Tyrol region of Italy, is performed. A conclusion is used to close the paper in

Section 6.

2 Two-component non-uniform weights hybrid model

Suppose we have a data which can be decomposed into two components and the components represent

specific behavior of the dichotomized data, and the goal is to use a smooth piecewise probability density

function (pdf) to model the data. Assume the data is continuous and follows a non-degenerate distribu-

tion. Let f1 and f2 be two pdfs each with parameter vector Θ1 and Θ2 in such a manner that each of the

pdf is suitable for modeling specific component of the data and without a loss in generality, f1 and f2 are

suitable for modeling the first and second component of the data respectively. Suppose F1 and F2 are

the respective cumulative distribution functions (cdfs) corresponding to f1 and f2, with respective corre-

sponding quantile functions Q1(p; Θ1) and Q2(p; Θ2) where Qi(p; Θi) = inf {w;Fi(w; Θi) > p} , 0 < p < 1.

The general two-component non-uniform weights hybrid model for the data can be specified by the pdf

of the form

f(x; Θ) =


w1f1(x; Θ1), −∞ < x ≤ u,

w2f2(x; Θ2), u ≤ x <∞,

(1)
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where Θ is a vector of free parameters in the model, w1 and w2 (w1 ̸= w2) are weights associated with

the respective component of the pdf in (1) with (w1, w2) ∈ [0, 1]2 and u is a junction point or threshold

indicating the point of transition from one component or behavior of the data to another.

Suppose that in the pdf in (1) the transition from one component to another is smooth, the following

assumptions are made:

(i) The pdf f is positive and satisfies

∫
R
f(x; Θ)dx = 1,

inferring that

w1F1(u; Θ1) + w2 [1− F2(u; Θ2)] = 1.

(ii) The distribution of the data has a heavy right tail belonging to the Fréchet maximum domain of

attraction.

(iii) The pdf f is continuous and differentiable at the threshold u and in addition, smooth and C1-regular,

implying that

w1f1(u; Θ1) = w2f2(u; Θ2),

w1f
′
1(u; Θ1) = w2f

′
2(u; Θ2).

Given these assumptions, we obtain


w1 = w2

f2(u;Θ2)
f1(u;Θ1)

;

w2 =
{

F1(u;Θ1)f2(u;Θ2)
f1(u;Θ1)

+ 1− F2(u; Θ2)
}−1

.

(2)

The pdf in (1) has cdf and corresponding quantile function given respectively by

F (x; Θ) =


w1F1(x; Θ1), −∞ < x ≤ u,

1− w2 [1− F2(x; Θ2)] , u ≤ x <∞,

(3)
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Q(p; Θ) =


Q1

(
p
w1

; Θ1

)
, if p ≤ w1,

Q2

(
p−(1−w2)

w2
; Θ2

)
, if p ≥ 1− w2.

(4)

Remark 1. One can simulate random samples from the model in (1) using (4) by simply replacing p

with the random variable U , where U is uniform on (0, 1).

To define a two-component half-normal-GPD hybrid model, f1 is taken to be the half-normal distri-

bution with pdf, cdf and quantile function expressed respectively as

f1(x;σ) =

√
2

σ
√
π
exp

(
− x2

2σ2

)
x ∈ {0} ∪ R+ σ ∈ R+,

F1(x;σ) = erf

(
x

σ
√
2

)
x ∈ {0} ∪ R+ σ ∈ R+,

Q1(p;σ) = σ
√
2erf−1(p) σ ∈ R+ 0 < p < 1,

where σ is a scale parameter, erf(·) is the error function and erf−1(·) is its inverse. Furthermore, take f2

as the GPD with pdf, cdf and quantile function expressed respectively as

f2(x− u;β, γ) =
1

β

(
1 + γ

x− u

β

)−1− 1
γ

, β ∈ R+ γ ∈ R,

F2(x− u;β, γ) = 1−
(
1 + γ

x− u

β

)− 1
γ

, β ∈ R+ γ ∈ R,

Q2(p;u, β, γ) =
β

γ

[
(1− p)−γ − 1

]
+ u, β ∈ R+ γ ∈ R 0 < p < 1,

∀x ≥ u ∈ Z(β, γ), Z(β, γ) =


[0,∞) if γ ≥ 0

[0,−β/γ) if γ < 0,

where β is a scale parameter and γ is the tail index parameter which controls the shape of the GPD.
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Using assumption (i)-(iii) we obtain the following relations for some of the parameters of the distribution:


w1 =

w2
βf1(u;σ)

;

w2 =
{
1 + F1(u;σ)

βf1(u;σ)

}−1
;

β = −(1 + γ)f1(u;σ)
f
′
1(u;σ)

.

(5)

It follows that the vector of parameter Θ will contain only the free parameters including the threshold

u. Thus Θ = [σ, u, γ]. These would be the parameters to be estimated using the proposed UIA. Once Θ

has been estimated the estimates of the parameters w1, w2 and β can easily be realized from (5).

Remark 2. Observe that in the half-normal-GPD hybrid model, there were six parameters whose values

we needed to estimate. However, with the assumptions (i)-(iii), the number of free parameters to be

estimated were reduced to three.
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Figure 1: Half-normal-GPD model densities for some selected values of free parameters

Remark 3. Given that w1 ̸= w2 it follows that the threshold u can be any quantile of the half-normal-

GPD model and thus the distribution is free of any constraint which is usually imposed for the case

when w1 = w2 (Carreau and Bengio, 2009; Debbabi and Kratz, 2014). Also, since the half-normal-GPD
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model is positively skewed, the mode of f is equal to zero and less than the median M . This implies that

0 ≤ w1
2 ≤ F (M ; Θ) = 1

2 and consequently 0 ≤ w1 ≤ 1. Furthermore, 0 ≤ w2 ≤ 1 and 1−w1 ≤ w2. Lastly,

w2 can be interpreted as the probability of exceeding the threshold u while w1 is a normalization parameter

ensuring that the density f integrates to unity.

3 Unsupervised iterative estimation algorithm

In this Section, a description of the UIA employed in estimating the vector of free parameter Θ is

presented. The model described in Section 2 is taken to belong to the Fréchet maximum domain of

attraction (i.e. γ > 0). For each iteration in the UIA, the UIA breaks down the problem of estimating

the vector of free parameters Θ into a double nested sub-problems namely: the parameter θ = [σ, u] and

γ. These are estimated successively.

For each iteration of the UIA, the parameter vector θ is first estimated by minimizing the Squared

Distance (SD) between the empirical cdf based on some sample and the theoretical one based on the

value of γ and then θ is replaced by its estimate obtained in this iteration to estimate γ in the next step

of the algorithm using a similar procedure.

Furthermore, θ is estimated again by minimizing the SD between the empirical cdf based on some

sample and the theoretical one based on the estimate of γ obtained from the previous iteration and then θ

is replaced by its estimate obtained in this iteration to estimate γ in the next step of the algorithm using

a similar procedure. Evidently, the algorithm begins with an initial value for γ obtained by minimizing

the SD between the empirical cdf based on some sample and the theoretical one based on the initial value

chosen for θ and only ends when a stop condition is realized.

Consider a sample X = (Xi)i∈{1,2,...,n} from the half-normal-GPD model, and let x = (xi)i∈{1,2,...,n}

be a given realization. Suppose α̃(0) and α̃(k) are the initial value and the estimate of the parameter α

at the kth iteration, respectively. To proceed with the UIA for the two-component hybrid model in 1,

we start with the initial value θ̃(0) =
[
σ̃(0), ũ(0)

]
, rather than begin by specifying an initial value for γ

because the only information we have about γ is that it is positive given that we are dealing with positive

data with positive skewness. Morever, σ̃(0) = qz% is chosen, where qz% represents an empirical quantile

of order z% associated to F . Also, ũ(0) = qρ% is chosen (as we fit a GPD above u). The initial value

of θ̃(0) is used to estimate γ̃(0) by minimizing the SD between the hybrid cdf given θ = θ̃(0) (fixed), and

the empirical cdf Fn associated to the sample X = (Xi)i∈{1,2,...,n} of size n, defined, for all t ∈ R, by
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Fn(t) =
n∑

i=1

1(Xi≤t)/n. Moreover, the SD is not evaluated only on the realizations xi (because there might

turn out to be just few realizations in the tail), but also on a sequence of generated synthetic data with an

increasing property y = (yj)j∈{1,2,...,m}, of size m (which may not be the same as n), with a logarithmic

step. The synthetic data is added to increase the number of realizations above the tail threshold u. In

particular, for any i ∈ {1, 2, ..., n}, yj is defined by:

yj = min(xi)
i∈{1,2,...,n}

+ ( max(xi)
i∈{1,2,...,n}

− min(xi)
i∈{1,2,...,n}

) log10

(
1 +

9(j − 1)

m− 1

)
. (6)

Remark 4. The introduction of new points between the observations of X only has an impact on F by

aiding its evaluation on more points, with no impact on the step function Fn.

To obtain γ̃(0) we solve the following minimization problem using the L-M algorithm (Levenberg,

1944; Marquardt, 1963):

γ̃(0) ← argmin
γ>0

∥∥∥F (y; Θ | θ̃(0))− Fn(y)
∥∥∥2
2
,

where Θ | θ̃(0) stands for Θ for θ = θ̃(0) and ∥.∥2 denotes the L2−norm.

After realizing γ̃(0), we proceed with the iterations. Now, ∀k ≥ 1, the kth iteration is divided into two

separate minimization problems, which are resolved successively, as described in the following Steps.

Step 1: Determine θ̃(k) =
[
σ̃(k), ũ(k)

]
by minimizing the SD between the hybrid cdf given γ̃(k−1), and

the empirical one, as follows:

θ̃(k) ← argmin
(σ,u)∈R+×R+

∥∥∥F (y; Θ | γ̃(k−1))− Fn(y)
∥∥∥2
2

where Θ | γ̃(k−1) denotes Θ for γ = γ̃(k−1) (fixed). The L-M algorithm is employed to numerically solve

this minimization problem.

Step 2: Determine γ̃(k) by minimizing the SD between the hybrid cdf given θ̃(k), and the empirical one

by solving the following minimization problem using the L-M algorithm:

γ̃(k) ← argmin
γ>0

∥∥∥F (y; Θ | θ̃(k))− Fn(y)
∥∥∥2
2
,

where Θ | θ̃(k), represents Θ for θ = θ̃(k) (fixed).
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Stop condition: The iterations continue till the following stop conditions are satisfied:

d
(
F (y; Θ(k)), Fn(y)

)
< ε︸ ︷︷ ︸

Condition 1

and d
(
F (yq

δ
; Θ(k)), Fn(yq

δ
)
)
< ε︸ ︷︷ ︸

Condition 2

 or k = kmax︸ ︷︷ ︸
Condition 3

where ε is a small positive real number, yq
δ
stands for the observations above a fixed quantile q

δ
of

a given order δ which is associated with the cdf F and d(x, y) denotes the distance between x and y.

The distance d(x, y) is chosen in this paper to be the Mean Squared Error (MSE) and it can be further

interpreted as the Cramér-von-Mises test of goodness of fit.

To guarantee a good fit of the entire data points and not just the data points lying in the area where

the bulk of the distribution lies but also for the tail, the UIA is forced to stop only when the MSE between

the hybrid cdf and the empirical one is small enough and this implies the satisfaction of Condition 1 and

Condition 2, otherwise, when a fixed maximum number of iterations kmax is attained (Condition 3).

Remark 5. While the hybrid model considered in this paper is assumed to belong to the Fréchet maxi-

mum domain of attraction, this algorithm can be extended to the case when the tail index of the GPD is

free of any constraints. Also, though the maximum likelihood estimation method appears as a natural esti-

mation method for the parameters of the hybrid model, in practice, this can be very challenging to execute

especially when the number of parameters to be estimated is many. Estimating many free parameters at

once can be very challenging and the challenge starts when selecting initial values for these parameters

as well as obtaining the expression of the gradient function from the likelihood or log-likelihood function.

This has informed the choice of the UIA as an alternative method to estimate the parameters of the hybrid

model. Nevertheless, when the number of free parameters are relatively small, the maximum likelihood

estimation method can be used and is equally robust. Lastly, to understand the convergence properties of

the type of iterative algorithm described above see Debbabi et al. (2016).

Summarily, presented below is the pseudo-code of the algorithm.
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Algorithm 1 UIA for the hybrid half-normal-GPD parameters estimation

1: Initialization: Decide start values for θ̃(0) and δ as well as values for ε and kmax. Proceed to obtain
γ̃(0) from:

γ̃(0) ← argmin
γ>0

∥∥∥F (y; Θ | θ̃(0))− Fn(y)
∥∥∥2
2
.

2: Iterative process: For

• k ← 1

Step 1 - Estimate θ̃(k) from:

θ̃(k) ← argmin
(σ,u)∈R+×R+

∥∥∥F (y; Θ | γ̃(k−1))− Fn(y)
∥∥∥2
2
.

Step 2 - Estimate γ̃(k) from:

γ̃(k) ← argmin
γ>0

∥∥∥F (y; Θ | θ̃(k))− Fn(y)
∥∥∥2
2
.

• k ← k + 1
until

(
d(F (y; Θ(k)), Fn(y)) < ε and d(F (yq

δ
; Θ(k)), Fn(yq

δ
)) < ε

)
or
(
k = kmax

)
.

3: Output: Return Θ(k) =
[
σ̃(k), ũ(k), γ̃(k)

]
.

4 Numerical studies

To study the performance of the UIA described in Section 3, we would resort to Monte Carlo simulations.

Through simulations we would attempt to test the efficiency of the UIA as applied in the estimating the

parameters of the hybrid half-normal-GPD model.

We proceed with the simulations as follows: We consider N (= 100 in this paper) training sets

{xq = (xqp)p∈{1,2,...,n}}q∈{1,2,...,N} of size n, and N test sets {yq = (yqp)p∈{1,2,...,l}}q∈{1,2,...,N} of size l,

simulated from the hybrid half-normal-GPD model with a fixed parameters vector Θ. Using each training

set xq, q ∈ {1, 2, ..., N}, Θ is estimated say Θ̃q = [σ̃q, ũq, γ̃q], using the UIA. We denote by α̃q the estimate

of the parameter α relative to the qth training set. Furthermore, the empirical mean and variance of α̃q

over the N training sets is computed namely α̃ =

N∑
q=1

α̃q/N and S̃α
N =

N∑
q=1

(α̃q− α̃)2/(N −1), respectively.

The significance of α̃ is determined from two criteria: the MSE and test of hypothesis on α. The MSE

is expressed for any parameter α as MSEα =

N∑
q=1

(α̃q − α)2/N. A small value of the MSE indicates the

efficiency of the UIA in estimating the parameter α. To test α̃ (with unknown variance) we set up the
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hypothesis

H0 : α̃ = α

H1 : α̃ ̸= α.

Because N is large, a z−test (instead of a t-test) of size κ, with a rejection region of H0 at risk κ%

described by
(
|Tα̃| > Φ−1(1− κ/2)

)
is used, where the statistics Tα̃ is given by Tα̃ = (α̃− α)/

√
S̃α
N , and

Φ−1(1 − κ/2) denotes the quantile of order 1 − κ/2 of the standard normal distribution Φ. Lastly, the

hybrid pdf f given Θ is compared with the pdf f̃ estimated on each test set yq, given Θ̃q. To do so, we

compute the average of the log-likelihood ratio D of f(yq; Θ) by f̃(yq; Θ̃q), over the N simulations:

D =
1

Nl

N∑
q=1

l∑
p=1

log

(
f(yqp; Θ)

f̃(yqp; Θ̃q)

)
. (7)

A small value of D indicates an efficient estimation of the parameters of the hybrid half-normal-GPD

model using the UIA.

We performed many Monte Carlo simulations by varying Θ and n in order to ascertain the robustness

of the UIA for different values of the parameters and sample sizes. We also set l = n, z = 20, κ = 5%,

δ = 0.3, ε = 10−8 and ρ = 0.4. To conserve space, the results of three of such simulations are reported

in Tables 1, 2 and 3, and the other unreported simulations follow a fashion similar to the ones reported

here. The efficiency of the UIA, in terms of goodness-of-fit, is shown through the two criteria described

above and the average of the log-likelihood ratio D.

We observe from the results in Tables 1, 2 and 3 that as the sample size increases the MSE becomes

smaller for all parameters. The variance of σ is also observed to be smaller than the variances of u and γ

for all parameters combinations and sample sizes. Observe also that, D is very small for all parameters

combinations and sample sizes. This highlights accuracy and efficiency in the estimation of the parameters

using the UIA.

We also made recourse to statistical hypothesis testing as an additional criterion. For the N training

sets, we compute the test statistics denoted Tα̃,N and the corresponding p-value pTα̃,N
= 2(1−Φ(|Tα̃,N |)),

with respect to the parameter α, that we will compare to κ. Whenever this p-value is higher than

κ, we fail to reject H0. For any n ∈ {103, 104, 105} and for any parameter α ∈ {σ, u, γ}, we obtain

|Tα̃,N | < Φ−1(0.975) = 1.96, and pTα̃,N
> κ = 5%, which shows a high acceptance (at the 5% level of

significance) of H0 (α̃ = α), that is, a very high level of similarity between the values obtained through
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the UIA and the fixed ones.

Lastly, we also observe that as the sample size increases, the average execution time of the UIA

increases. It should be noted that the estimation algorithm was implemented using the R programming

language. For faster programming languages, the average execution time of the estimation algorithm

could significantly reduce.

Table 1: Simulation results for Θ = [1, 3, 1.5]

n = 103 n = 104 n = 105

M
o
d
el

p
ar
am

et
er
s

σ = 1

σ̃ 0.9898 0.9978 0.9999

S̃
σ

N 1.02 10−3 1.15 10−4 1.56 10−5

MSEσ 1.11 10−3 1.15 10−4 1.54 10−5

Tσ̃,N −0.3200 −0.2083 −0.0534

u = 3

pTσ̃,N
0.7490 0.8350 0.9574

ũ 3.3181 3.1098 3.0008

S̃
u

N 2.0292 4.49 10−1 1.52 10−2

MSEu 2.1101 4.49 10−1 1.51 10−2

Tũ,N 0.2233 0.1652 0.0061

γ = 1.5

pTũ,N
0.8233 0.8688 0.9951

γ̃ 1.7265 1.6312 1.4912

S̃
γ

N 6.89 10−1 3.12 10−2 9.37 10−3

MSEγ 6.92 10−1 3.26 10−2 9.24 10−3

Tγ̃,N 0.2728 0.1206 −0.0922
pTγ̃,N

0.7850 0.8627 0.9265

Execution time in seconds 237.50 1885.94 19884.85

Maximum number of iterations 50 50 50

D 1.62 10−3 1.13 10−4 1.12 10−6
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Table 2: Simulation results for Θ = [2.5, 5, 1.5]

n = 103 n = 104 n = 105

M
o
d
el

p
ar
am

et
er
s

σ = 2.5

σ̃ 2.4945 2.4981 2.4997

S̃
σ

N 1.59 10−2 1.35 10−3 1.45 10−4

MSEσ 1.58 10−2 1.32 10−3 1.43 10−4

Tσ̃,N −0.0435 −0.0517 −0.0250

u = 5

pTσ̃,N
0.9653 0.9586 0.9801

ũ 4.9973 4.9986 5.002

S̃
u

N 6.45 10−1 9.71 10−2 4.49 10−3

MSEu 6.39 10−1 1.00 10−1 4.41 10−3

Tũ,N −0.0034 −0.0045 0.0039

γ = 1.5

pTũ,N
0.9973 0.9964 0.9976

γ̃ 1.5536 1.5217 1.4985

S̃
γ

N 3.60 10−1 4.23 10−2 2.24 10−3

MSEγ 3.59 10−1 4.37 10−2 2.22 10−3

Tγ̃,N 0.0892 0.1055 −0.0317
pTγ̃,N

0.9289 0.9160 0.9747

Execution time in seconds 257.01 1925.24 20184.75

Maximum number of iterations 50 50 50

D 5.67 10−5 1.26 10−5 6.94 10−8

Table 3: Simulation results for Θ = [1.5, 3.5, 2]

n = 103 n = 104 n = 105

M
o
d
el

p
ar
a
m
et
er
s

σ = 1.5

σ̃ 1.4980 1.4987 1.4991

S̃
σ

N 5.34 10−3 3.67 10−4 8.85 10−5

MSEσ 5.29 10−3 3.73 10−4 9.07 10−5

Tσ̃,N −0.0279 −0.0679 −0.0956

u = 3.5

pTσ̃,N
0.9778 0.9459 0.9238

ũ 3.5337 3.47898 3.4912

S̃
u

N 4.65 10−1 8.60 10−2 4.38 10−3

MSEu 4.61 10−1 9.01 10−2 1.42 10−3

Tũ,N 0.0495 −0.0689 −0.1612

γ = 2

pTũ,N
0.9606 0.9451 0.8943

γ̃ 2.4352 1.9005 1.9601

S̃
γ

N 3.1017 2.19 10−1 6.13 10−2

MSEγ 3.2601 2.27 10−1 9.42 10−2

Tγ̃,N 0.2471 −0.2127 −0.1612
pTγ̃,N

0.8048 0.8316 0.8719

Execution time in seconds 217.13 1819.07 19163.92

Maximum number of iterations 50 50 50

D 1.03 10−3 5.35 10−5 7.85 10−6
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5 Applications

Here the half-normal-GPD hybrid model is used to model two real data sets. The first data set is the

Standard & Poor’s 500 (S&P 500) index. The S&P 500 index which is reported daily includes Open Prices,

High Prices, Low Prices, Close Prices, Adjusted Close Prices and Volume of S&P 500. Our focus is on the

indices reported for the period 2nd January, 1987 to 9th May, 2024 with 9411 observations. The goal is

to model the absolute log returns of the market rather than the actual returns. The absolute log returns

of the market are obtained as the absolute value of the logarithm of the ratio of the current Adjusted

Close Price to the previous Adjusted Close Price. The absolute log returns for the afforementioned period

has skewness 4.8065 and excess kurtosis 61.4471. The S&P500 index data set is readily available in the

Yahoo Finance database.
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Figure 2: The absolute log returns of the S&P500 from 2nd January, 1987 to 9th May, 2024

Reported in Table 4 are the results obtained from using the half-normal-GPD model in fitting the

data set using the UIA. These results include the estimates of the parameters of the distribution and the

Kolmogorov-Smirnov (K-S) statistic as well as its corresponding p-value.
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Table 4: UIA results for the absolute log returns of S&P500 index

Estimation method Parameter estimate K − S p-value

UIA σ̂ = 0.0040 û = 0.0020 = q25.1% 0.0067 0.7901

γ̂ = 0.0098 β̂ = 0.0073
ŵ1 = 0.5982 ŵ2 = 0.7492
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Figure 3: Histogram and fitted density of the absolute log returns of S&P500 index
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Figure 4: Q-Q plot of the absolute log returns of S&P500 index

The second data set is the rainfall intensity in millimeters per hour which triggered some 785 debris

flow events in the South Tyrol region of Italy between 1987 and 2022. The data set was provided by

the Agency for Civil Protection of the Autonomous Province of Bozen-Bolzano, Italy. The skewness and

excess kurtosis of the data are respectively 1.8466 and 3.2528 which clearly shows that the data set is

also highly skewed to the right with a heavy tail.

Reported in Table 5 are the results obtained from using the half-normal-GPD model in fitting the

data set using the UIA. These results include the estimates of the parameters of the distribution and the

Kolmogorov-Smirnov (K-S) statistic as well as its corresponding p-value.

Table 5: UIA results for the rainfall intensity data

Estimation method Parameter estimate K − S p-value

UIA σ̂ = 3.2855 û = 4.4253 = q68.8% 0.0388 0.1877

γ̂ = 0.6329 β̂ = 3.9830
ŵ1 = 0.8248 ŵ2 = 0.3221
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Figure 5: Rainfall intensity in millimeters per hour which triggered some 785 debris flow events in South
Tyrol, Italy
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Figure 6: Histogram and fitted density of the rainfall intensity data

The results obtained from using the hybrid half-normal-GPD model to model the two data sets show

that the model provided good fits to the data sets.
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Figure 7: Q-Q plot of the rainfall intensity data

6 Conclusion

A new two-component hybrid model, suitable for modeling data with high right-skewness and estimated

by an unsupervised iterative estimation algorithm has been introduced in this paper. We have demon-

strated the hybrid model’s flexibility and robustness in capturing the unique characteristics of such data

through application to real data sets. Moreover, through empirical analyses on synthetic data sets, the

unsupervised iterative estimation algorithm for the estimation of the parameters of the hybrid model has

shown high accuracy and efficiency, making it a valuable tool for practical applications. This new hybrid

model and this estimation technique hold significant promise for a wide range of fields where right-skewed

data sets are prevalent, such as finance, environmental studies, signal processing, biomedicine etc. Future

research focus could extend this work by exploring multi-component extensions and applying the model

and the estimation algorithm to more diverse data sets. Additionally, integrating this hybrid model into

more complex statistical frameworks, such as regression models and machine learning algorithms, could

further enhance its utility and scope of application. In general, our contribution in this paper provides a

substantial advancement in the modeling of data exhibiting high skewness to the right, offering a powerful

and versatile tool for statisticians, data scientists and users of statistics.

Data Availability Statement The datasets used in this article can be readily made available upon

request from the author.
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