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Abstract

The Hotelling model is widely used to analyze platform competition in two-sided markets.

In this setup, the degree of platform differentiation must be high relative to cross-group

benefits to eschew the alleged non-existence of Nash equilibria. We show instead that Nash

equilibria exist even for low differentiation; at such equilibria, platforms avoid competition

by replicating a collusive outcome. This result broadens our understanding of the two-sided

Hotelling model and is relevant for a wide range of markets − especially digital ones − where

platforms operate in low-differentiation environments.
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1 Introduction

In many markets, competing platforms bridge different groups of agents. Since Armstrong

(2006)’s seminal work, the Hotelling duopoly has become the workhorse for analyzing platform

competition in such two-sided markets. Crucially, Armstrong (2006) (condition (8) p. 674) shows

that platform differentiation must be high relative to the value agents in a group attribute

to interacting with agents in the other group (i.e., cross-group benefits) to ensure that Nash

price equilibria exist. Otherwise, the lure to steal business from the rival leads to cut-throat

competition, which jeopardizes the market’s duopolistic structure.1

However, in many instances − particularly digital markets like streaming, marketplaces, ride-

sharing, and online travel agencies − the assumption of relatively high differentiation is difficult

to uphold. On these platforms, finding desired content or services (i.e., cross-group benefits)

often matters no less than personal preference for specific platforms (i.e., differentiation degree).

One might therefore conclude the Hotelling model is less applicable to digital markets.

In this paper, we consider a simple two-sided Hotelling framework and show that Nash

equilibria exist even for low platforms’ differentiation. At these equilibria, platforms serve as

many consumers as possible, but simultaneously avoid business stealing; such behavior mimics

collusion, which defuses ruthless competition. Our result is relevant for two reasons. First,

it deepens understanding of the two-sided Hotelling model by characterizing Nash equilibria

without restrictive assumptions. Second, it reflects the reality of many digital markets, where

low differentiation is a plausible scenario.

In what follows, Section 2 presents the model; to illustrate the Hotelling price game in the

unrestricted parameter space, Section 3 considers the one-sided Hotelling model. Section 4

examines the two-sided framework and derives the main result.

2 Model

Two platforms, indexed i ∈ {0, 1} and located at the endpoints of a unit-length Hotelling

segment, connect two sets of agents, referred to as consumers and producers, and set prices only

on the consumer side.2 The platforms’ production costs are normalized to zero.

A unit mass of consumers is uniformly distributed along the line and incurs linear transporta-

tion costs. Consumers decide whether to be inactive, or to join one platform. In the former

case, their utility is zero; in the latter, the utility function of a consumer located at x ∈ [0, 1]

1As Caillaud and Jullien (2003) point out, strong cross-group benefits imply ”highly contestable market struc-
tures, where all potential profits are eroded in order to protect a monopoly position”.

2We build on Armstrong (2006) for the consumer side and on Hagiu (2006) for the producer side; a similar
framework is developed by, e.g., Rasch and Wenzel (2013).
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and joining platform i is

U(x, pi,E(ni)) = v + α · E(ni)− tdi(x)− pi. (1)

Term v ≥ 0 denotes the stand-alone utility that consumers enjoy if they join a platform with no

producers. The expression αE(ni) captures the cross-group benefits that a consumer gains on

platform i, where α ∈ (0, 1] is the marginal benefit, and E(ni) the expected mass of producers

active on platform i. The term t > 0 is the marginal transportation cost and di(x) is the

Euclidean distance between the consumer and platform i. Last, pi is the price charged by

platform i on the consumer side.

A unit mass of producers is present on the other side of the market. Each of them chooses

whether to be inactive, or to join one or both platforms. Producers bear heterogeneous setup

costs f , uniformly distributed over [0, 1], to operate in either platform. Each producer enjoys the

marginal cross-group benefit γ ∈ (0, 1] and pays no fee to join a platform. A cost-f producer is

willing to join platform i iff γ ·E(Di) ≥ f , where E(Di) is the expected mass of consumers active

on platform i. The resulting mass of producers joining platform i is ni = Prob(γ · E(Di) ≥ f);

under the assumption of uniform distribution of setup costs, ni = γ · E(Di).

The agents play the following game. Platforms simultaneously set prices pi to maximize

profits, πi = piDi. Then, consumers and producers simultaneously make their joining decisions.

In the literature, this game is solved as follows. Equation U(x, p0,E(n0)) = U(x, p1,E(n1)) yields

the location of the consumer indifferent between joining platform 0 or 1:

x̂ =
1

2
+
p1 − p0 + α(E(n0)− E(n1))

2t
. (2)

Producers and consumers have correct expectations about the other side’s participation: E(D0) =

x̂, E(D1) = (1− x̂), and E(ni) = γE(Di). Solving the system of producers’ and consumers’ ex-

pectations yields E(n0) = γx̂ and E(n1) = γ(1− x̂), which are then plugged into (2),

xI =
1

2
− p0 − p1

2(t− αγ)
. (3)

Platforms 0 and 1 simultaneously solve problems max
p0

p0xI and max
p1

p1(1− xI). The symmetric

equilibrium price is t − αγ, and the equilibrium profits are t−αγ
2 ; both values are positive iff

t > αγ: the transportation cost parameter must be larger than the product of marginal cross-

group benefits. This condition is akin to (8) in Armstrong (2006) and is deemed to be necessary

and sufficient for equilibrium existence.

In the remainder of the analysis, we proceed in two steps to show that Nash price equilibria

exist also if t ≤ αγ. We first describe the Nash equilibria in the one-sided Hotelling framework;

next, we re-consider the two-sided framework and derive its Nash equilibria, for any t > 0.
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3 One-sided Framework

Two producers i ∈ {0, 1} are located at the endpoints of the segment and sell their good to

the consumers, whose gross utility from unit consumption is v. Letting t > 0, at most three

alternative price responses are available to i, for any given pj ∈ (0, v], i, j ∈ {1, 0}, i 6= j.

Producer 0’s price responses are depicted in Figure 1, where: pi is producer i’s price; the

green (red) line is the consumers’ utility when purchasing from 0 (1) as a function of their

location x; xi(pi) is the (location of) the marginal consumer (indifferent between purchasing

from i and not purchasing); xI(p0, p1) is the indifferent consumer; the green (red) portion of the

unit segment represents 0’s (1’s) demand.

Panel (a). Producer 0 sets a relatively low price to steal customers from the rival, so that

x0(p0) > x1(p1): this results into the standard Hotelling Duopoly scenario (HD), where

the indifferent consumer xI enjoys positive utility and the market is fully covered.

Panel (b). Producer 0 sets a relatively high price to avoid business stealing, so that x0(p0) <

x1(p1): this results into the Local Monopolies scenario (LM), where xI obtains strictly

negative utility and the market is partially covered.

Panel (c). Producer 0 sets the price with the aim of exclusively attracting the consumers that

would derive a negative utility from patronizing producer 1, so that x0(p0) = x1(p1); xI

obtains zero utility and the market is fully covered. We label this configuration Monop-

olistic Duopoly (MD) because it combines the characterizing features of the other two

scenarios: full market coverage and avoidance of business stealing.

Three mutually exclusive Nash Equilibria arise in the one-sided Hotelling price game with

unrestricted, positive, t: HD equilibrium if t is low relative v, LM equilibrium if t is high relative

v and MD equilibrium if t takes intermediate values.3

At the MD equilibrium, producers strategically interact to keep the market covered, hence

their prices are interdependent, but do not directly compete with one another to steal consumers.

The MD equilibrium prices coincide with those of a multi-product monopolist that serves the

entire market. MD is thus akin to, but distinct from, collusion because, on the one hand, the

MD prices maximize the industry profits; on the other hand, they are a Nash equilibrium of a

one-shot game. We refer to it as quasi-collusion.

3We refer to Mérel and Sexton (2010) and Thépot (2007) for a characterization. See also: Salop (1979); Cowan
and Yin (2008); Rey and Salant (2012); Fedele and Depedri (2016); and Rey and Tirole (2019).
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(a) HD. (b) LM.

(c) MD.

Figure 1: Possible price responses in the one-sided Hotelling game.

4 Results

With the above equilibrium tri-partition in mind, let us now revert to the two-sided framework

of Section 2. We define e ≡ αγ and state the following.4

Proposition 1. Four alternative equilibrium configurations arise depending on the value of t

relative to v and e:

(i) if t ≤ e, MD with prices pMD ≡ v − t
2 + e

2 ;

(ii) if e < t < e+ 2
3v, HD with prices pHD ≡ t− e;

(iii) if e+ 2
3v ≤ t ≤ e+ v, MD with prices pMD ≡ v − t

2 + e
2 ;

(iv) if t > e+ v, LM with prices pLM ≡ v
2 .

Proof. We first prove points (ii)-(iv) and then point (i).

Point (ii). At the HD equilibrium (see Section 2), the indifferent consumer obtains positive

utility, as illustrated in Figure 1: denoting pHD ≡ t − e the equilibrium price, the parametric

4We restrict our attention to the unique symmetric MD equilibrium. A continuum of asymmetric MD equilibria
exist in the one-sided setup. These equilibria share the same characteristics as the symmetric one, except for the
lower total industry profit they generate.
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interval in which HD arises is U(xI(p
HD), pHD,E(n0(p

HD)) = v + e
2 − (t − e) − t

2 > 0 ⇔ (e <

)t < e+ 2
3v.

Point (iv). Exploiting symmetry, we consider platform 0. Solving U(x, p0,E(n0)) = 0 for

x gives the location of the marginal consumer, x0 = v+αE(n0)−p0
t . With correct expectations,

platform 0’s demand is D0 = v−p0
t−e and platform 0 solves problem max

p0
p0

(
v−p0
t−e

)
. We get

pLM ≡ v
2 , with x0(p

LM ) = v
2(t−e) . At the LM equilibrium, the indifferent consumer obtains a

negative utility, so U(xI(p
LM ), pLM ,E(n0)(p

LM )) = v + e v
2(t−e) −

v
2 −

t
2 < 0⇔ t > e+ v.

Point (iii). Consider the interval e + 2
3v ≤ t ≤ e + v . Substituting (3) into (1) yields the

indifferent consumer’s utility, v+ (e− t)
(
1
2 −

p0−p1
2(t−e)

)
−p0, which is zero at the MD equilibrium.

Hence

p0 + p1 = 2v − t+ e. (4)

At the candidate symmetric equilibrium, pMD ≡ 2v−t+e
2 . To confirm that this is an equilibrium,

we exploit symmetry and investigate deviations by platform 0, given that p1 = pMD.

Deviation to HD. Plugging p1 = (pMD ≡)2v−t+e2 into (2) yields the indifferent consumer’s

location as a funcion of p0,

2v + t+ e

4t
− p0

2t
+
α (E(n0)− E(n0))

2t
. (5)

A deviation leads to HD if the deviation price is lower than pMD; in this case, profits are

maximized at pD,HD0 = 2v+t+e+2α(E(n0)−E(n1))
4 . This deviation is unfeasible, iff

pD,HD0 ≥ pMD ⇔ E(n0)− E(n1) ≥
2v − 3t− 3e

2α
. (6)

To investigate whether (6) holds, we proceed as follows. Among all possible consumers’ off-the-

equilibrium expectations, we select those such that E(n0) − E(n1) ≥ 0 and observe that the

RHS of (6) is non-positive in the interval of interest. Consequently, reasonable off-equilibrium

expectations exist which make this deviation unfeasible.

Deviation to LM. A deviation leads to LM if the deviation price is higher than pMD; in this

case, profits are maximized at pLM ≡ v
2 . However, this value is weakly lower than pMD in the

interval of interest, hence this deviation is unfeasible.

Point (i). If t ≤ e, platform i’s demand as defined in (3) increases in pi, which is economically

nonsensical. To compute the indifferent consumer’s location, we then proceed as follows. At

the symmetric MD equilibrium, producers’ correct expectations are E(Di) = 1
2 , which imply

ni = γ
2 . In turn, consumers’ correct expectations require E(ni) = γ

2 . Plugging γ
2 into (1) and

solving U(x, p0,E(n0)) = U(x, p1,E(n1)) for x returns xI = 1
2 + p1−p0

2t . This indifferent consumer

obtains zero utility (v + e
2 − p0 − t

(
1
2 + p1−p0

2t

)
= 0) if (4) holds true. The candidate symmetric

MD equilibrium price is hence pMD ≡ 2v−t+e
2 .

6



Deviation to HD. A deviation to HD is unfeasible iff (6) holds true. With off-equilibrium

expectations such that E(n0) − E(n1) ≥ 0, it is sufficient to assume that the RHS of (6) is low

enough.

Deviation to LM. The deviation price pLM ≡ v
2 is lower than pMD in the interval of interest,

which rules out this deviation.

Proposition 1 extends the one-sided Hotelling game equilibrium taxonomy to its two-sided

counterpart. Notably, Points (ii)-(iv) parallel those of Proposition 1 in Mérel and Sexton (2010).

However, Point (i) highlights a substantive difference: as t approaches 0, the HD equilibrium

characterizes one-sided markets, while the MD equilibrium prevails in two-sided environments.

What is the intuition behind this novel result? In two-sided markets with positive cross-

group effects, low t would spark a price war if platforms’ goal were to steal consumers from one

another − as is the case at the HD (candidate) equilibrium − driving prices and profits into

negative territory. To avoid this, platforms shift to a MD equilibrium and target only users not

served by the rival; this quasi-collusive strategy ensures positive profits.

Our result shows that, contrary to what is commonly accepted in the literature, the Hotelling

model is robust enough to describe the equilibrium behavior of platforms when cross-group

benefits are at least as important as the differentiation degree; interestingly, this scenario is

likely to be common in digital markets.
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Mérel, P. R. and Sexton, R. J. (2010). Kinked-demand equilibria and weak duopoly in the

Hotelling model of horizontal differentiation. The BE Journal of Theoretical Economics,

10(1):0000102202193517041619.

Rasch, A. and Wenzel, T. (2013). Piracy in a two-sided software market. Journal of Economic

Behavior & Organization, 88:78–89.

Rey, P. and Salant, D. (2012). Abuse of dominance and licensing of intellectual property.

International Journal of Industrial Organization, 30(6):518–527.

Rey, P. and Tirole, J. (2019). Price caps as welfare-enhancing coopetition. Journal of Political

Economy, 127(6):3018–3069.

Salop, S. C. (1979). Monopolistic competition with outside goods. The BELL Journal of

Economics, pages 141–156.
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