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Abstract

Bioimpedance refers to the measurement of the electrical impedance
of biological tissue, and it has recently gained popularity as a tool for
monitoring the food ripening process. In this work, we propose a novel ap-
plication of a dynamic panel threshold regression model to identify mean-
ingful physio-chemical transitions in fruit bioimpedance time series. The
method is applied to an innovative three-way panel dataset comprising
fruit bioimpedance measurements collected across a range of frequencies
using two types of electrical impedance analysers: a bench-top device and
a state-of-the-art portable one. Separate estimation is conducted for each
device using a first-differenced generalised method of moments approach
with instrumental variables. The analysis offers insights into ripening dy-
namics by estimating thresholds and identifying change points across the
frequency spectrum. In addition, it produces novel evidence regarding
the performance of the portable device, supporting its practical relevance
for post-harvest monitoring, processing, and optimisation within the fruit
supply chain. The three-way panel model is implemented in the R package
PanelTM.

Keywords: Change point detection, Electrical impedance spectroscopy,
Generalized method of moments, Panel data, Threshold model
JEL Code: C13, C18, C23, L66

1 Introduction

Bioimpedance refers to the measurement of the electrical impedance of biological
tissue, that is, a physical quantity describing the ability of the tissue to oppose
an external flow of electrical current (Grimnes and Martinsen, 2015; Ward and
Brantlov, 2023). The measurement of bioimpedance involves applying a small
electrical current to biological tissue and measuring the electrical response, of-
ten across a range of frequencies, a technique known as electrical impedance
spectroscopy (EIS) (Grossi and Ricco, 2017). Since the electrical properties of
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tissue can be correlated with specific quality attributes, and different electrical
frequencies cross cell membranes in different ways (Ibba et al., 2020), the anal-
ysis of electrical signals is useful to provide information about the properties
of the analysed tissue (see e.g. El Khaled et al., 2017; Urzeniczok and Karpiel,
2024). Consequently, in recent years, bioimpedance and EIS have been gaining
popularity in food quality control (Pliquett, 2010). For example, recent studies
have demonstrated the potential of bioimpedance to monitor ripening stages in
fruits such as lemons (Swain et al., 2025) and to assess the freshness of various
fruits and vegetables (Kluza et al., 2025).

This paper focuses on EIS devices that measure the impedance of fruit over
time to study dynamic changes in tissue electrical properties. We evaluate two
EIS devices: a bench-top impedance analyser (IA) and a portable system called
“FruitMeter” (FM) to assess any differences in the ability to detect physical
changes in the fruit. The paper addresses statistical challenges in time-domain
EIS data, since they present both serial and cross-sectional dependence, and are
observed hundreds of times according to the range of frequencies applied. From
Fig. 1 is evident that the variability among fruits, the type of bioimpedance
analyser, and the temporal dynamics of the measurements conducted have an
effect on bioimpedance. Since one of the main purposes of fruit bioimpedance
analysis is to assess the ripening time, another challenge regards the develop-
ment of a method to detect a possible point of change in the bioimpedance
time series by exploiting thresholds varying across time series. Therefore, the
development of a three-way dynamic panel threshold appears necessary.

Our proposal encompasses, on the one hand, panel regression models and, on
the other, change-point detection methods. The reference literature is extensive,
but to the best of our knowledge, from self-exciting threshold autoregressive
models (Tong, 1990; Hansen, 2000) to the more recent dynamic panel model with
threshold effect developed by Seo and Shin (2016), no panel models have been
designed to work with three-way data and threshold parameters that are not
common to all time series. Similarly, regarding change-point detection methods
for panel data, existing approaches (see e.g. Li et al., 2015; Chen and Huang,
2017; Maciak et al., 2020) are not suitable for three-way structured data and
have never been applied to bioimpedance data.

The proposed methodology builds upon the panel threshold model intro-
duced by Seo and Shin (2016) in two key directions: (i) by adapting the origi-
nal two-way structure to a three-way framework suitable for frequency-indexed
bioimpedance panel data - specifically, allowing the threshold parameter to vary
with the third dimension - and (#7) by introducing a measure to detect a change
point in the estimated temporal dynamics. We apply our proposal to an inno-
vative dataset concerning fruit bioimpedance curves over a range of frequencies.
Here the purpose is twofold: (i) identifying the change point in bioimpedance
time series that presumably indicates the onset of fruit spoilage and (ii) as-
sessing the possible equivalence between a classic bench-top EIS and a novel
portable EIS device.

The paper is organized as follows. In Sect. 2, we describe the innovative
bioimpedance data that motivates our proposal. In Sect. 3, we present the
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Figure 1: Bioimpedance spectra (x-axis: electrical frequency, y-axis:
bioimpedance) for a subset of the banana sample analyzed, a fixed instant time
(t = 7), and the TA (left); bioimpedance spectra - averaged over time and ba-
nanas - (x-axis: electrical frequency, y-axis: bioimpedance) for the EIS device
considered, i.e. TA (dashed line) and FM (solid line) (middle); bioimpedance
time series - averaged on bananas - (x-axis: time, y-axis: bioimpedance) for a
small subset of the possible frequencies for the EIS considered, i.e. IA (black
lines) and FM (other lines) (right).

three-way dynamic panel threshold model and a criterion to detect a change
point. The real data analysis concerning fruit bioimpedance is shown in Sect. 4.
Discussion and conclusion are presented in Sect. 5.

2 Bioimpedance Data

The innovative data we consider in this study consists of a collection of bioimpedance
measurements of a production batch of 150 bananas observed for 11 days.
The experiment was conducted by the Sensing Technologies Laboratory at the
Free University of Bozen-Bolzano in the context of an interdisciplinary research
project between the Faculty of Economics and Management and the Faculty of
Engineering. In the experiment on fruit ripening, two bioimpedance analysers
were used: a bench-top EIS device called “impedance analyser” (IA) that is
a marketed equipment device, and an innovative portable custom-made device
called “FruitMeter” (FM) (Ibba et al., 2021). Bench-top EIS devices are typi-
cally unwieldy and more powerful than a portable EIS device and are therefore
generally more expensive and require more maintenance and expertise to op-
erate, while portable EIS devices are small, lightweight instruments that can
be easily transported and easily used in a wide range of situations and appli-
cations. With both the analysers, bioimpedance measurements were performed



over a range of frequencies using two electrodes placed on the surface of each
piece of fruit being measured (Ibba et al., 2020). A small alternating current
was applied through one electrode, and the resulting voltage was measured at
the other electrode and then used to calculate the impedance of the material at
different frequencies. Since the voltage that generates the flow affects the mea-
surement of bioimpedance, multiple electrical frequencies should be considered
when assessing fruit quality (Ibba, 2021).

Bioimpedance measurements are provided at 189 frequencies ranging from
20 to 13668764.956 Hz for the IA and at 181 frequencies from 10 to 99000
Hz for the FM. It is to be noted that frequency values for the IA and FM
are similar, but do not perfectly coincide. All the fruits were harvested simul-
taneously and placed on sale together, thus ensuring the homogeneity of the
initial stage of ripening of the banana batch. The measurements were per-
formed every day for 11 days, i.e. until the fruit visibly deteriorated, to monitor
the progress of ripening with controlled room temperature and humidity. In
Fig. 2, a preliminary representation of the data is shown for a set of frequen-
cies ranging from the minimum to the maximum of the devices and considering
three intermediate frequencies common to the two analysers used. Specifically,
we have considered the frequencies (10,1000, 10000, 30000, 99000) for FM and
the frequencies (20, 1018.568, 10026.058, 29286.314, 13668764.956) for IA. Con-
sidering that our aim is not only to investigate the temporal dynamics of fruit
bioimpedance by varying spectroscope frequency but also to compare the two
analysers considered, frequencies j < 20 and j > 99000 Hz have been omitted.
In addition, as shown in Fig. 2, we observe that bioimpedance time series tend
to flatten at higher frequencies, regardless of the type of impedance analyser
used. Bioimpedance measurements over time appear to be less informative in
terms of the fruit ripening process and, for this reason, we have restricted the
analysis to the set of frequencies in the interval 20 < j7 < 30000 Hz. This selec-
tion led to 103 frequencies for the TA and 107 for the FM. In the end, the two
post-processing data sets constitute three-way balanced panels with n = 150
bananas, J = 103, and J = 107 electrical frequencies for the TA and the FM, re-
spectively, and T' = 11 days. Finally, we have additional information regarding
fruit weight for each day, which is a time-varying regressor that can be useful
in describing the fruit ripening process.

3 Three-way Dynamic Panel Threshold Model

We define a three-way dynamic panel threshold regression modeloni=1,...,n
statistical units observed in ¢t = 1,...,T instants of time by varying a third way
of j=1,...,J values

vijt = (1, x3;)0151 {yiju—1) <75} + (LX) b2 1 {wije—1y) > v} +ee (1)

where y;;5; is the value of the variable Y observed on the i-th statistical unit
at time ¢ for the j-th value of the considered third way, x;;; is a vector of k;
time-varying (exogenous or endogenous) regressors, which may include lagged
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Figure 2: Bioimpedance time series (x-axis: time, y-axis: bioimpedance) of the
150 bananas observed as provided by the FM (left) and the TA (right) device
by varying spectroscope frequency in (10,1000, 10000, 30000, 99000) Hz for FM
and in (20,1018.568,10026.058,29286.314, 13668764.956) Hz for IA (from the
lightest to the darkest color).

dependent variable, ¢1; = (gb%-), ey (bg];lﬂ)) and ¢o; = ((ﬁg), cey gi)g;lﬂ)) are,
respectively, the lower and upper regime intercept and slope parameters vectors
of the j-th value, 1 is the indicator function that captures the change in regime
and is defined by the threshold parameter 7; that can vary by j, the lagged
dependent variable y;;(;—1) is the endogenous transition variable, and €;;; is the

error term that is defined as the sum of three components
Eijt = Wi + Aj + Viji

where p; is the unobserved individual fixed effect, \; is the unobserved third-way
fixed effect, and v;;; is a zero mean random error such that E (v;;|Fi—1) = 0,
where F; is a natural filtration at time ¢ such that v;;; is a martingale difference
sequence.

3.1 GMM estimation method for the three-way model

The model in Eq. (1) can be estimated by adapting the generalised method of
moments (GMM) in Seo and Shin (2016), which is based on the first difference
transformation (FD) and the use of instrumental variables (IVs), to the three-
way model case. Inspired by the motivating empirical applications (see Sect. 4),
we assume that the J values of the third way are independent of each other, and
represent, for instance, the categories or levels of a variable. This case occurs
every time observations replicated on the same statistical units 7 at a fixed time
t do not have any effect on each other, i.e. are independent.

The FD-GMM estimator for the three-way panel threshold model in Eq. (1)
is developed through a procedure for the following first-differentiated model to



deal with the correlation between regressors and the individual and category
fixed effects

Ayije = Yije — Yij—1) = BjAT50 + 0 X5 Lije(v;) + Aeije

/
where A is the first difference operator, 5; = (gb%), ce QSY;IH)) , 05 = (¢ —
b15),

(1.x};0) Wyiso > 7}
X, = ij () = Yijt)y = Vi ) ’
" ( (1aX§j(t—1)) > #0) ( ~Hyije-1) >}

and Ae;ji = €ijt — €ij(t—1) = Vijt — Vij(t—1)- Lherefore, 0; = (B},0%,7;)" is the
(2k1 4 2)-dimensional vector of parameters to estimate for each level j, and the
whole unknown parameters vector is § = (07, ...,6’;)" and belongs to a compact
set © C R* with k = (2k; + 2).

In light of the independence among levels of the third way, we can estimate
the parameters vector for each level j taken separately, i.e. estimate §; for
each j € {1,...,J}. Indeed, the GMM objective function to minimise to find
f is a block diagonal matrix where each block is positive definite and can be
minimised independently from the other blocks. We therefore estimate each 6;,
with 7 = 1,...,J, taken separately. The idea is to use a two-step procedure
where, in the first step, the GMM estimator of 5; and §; for a fixed ~; is
found through the grid search algorithm. Hence, (A;»,g;-)’ = (BJ (’yj)’,é}(&j)’)'
and (B;-,S;,%)' are the first-step GMM parameters estimates. The second-
step GMM estimators are given by the same procedure based on the grid search
algorithm, updated by exploiting the first-step estimates. A detailed description
of the estimation procedure for ¢; along with the asymptotic theory of the
estimator and the test for threshold effect can be found in Seo and Shin (2016).

3.2 Change Point Detection

The three-way dynamic panel threshold model in Eq. (1) is also conceived to
detect change points in panel data. Once the model proposed is estimated
through the method developed in Sect. 3, the final goal is to compute the change
point (CP) in each time series, that is the time at which a regime switch occurs.
From the applied point of view, this involves testing structural change problems
that occur naturally in many contexts; for example, in the context of fruit
ripening control, where one is faced with the output of a production line and
wants to detect any departure from an acceptable production standard. We
propose to compute the change point as the minimum time at which the regime
switch occurs, that is, the point at which the time series is greater than the
estimated threshold parameter. We thus define the following measure

CPyj = argmin {1(y;: > 9;)} (2)
te{1,..., T}



which provides the time of the regime change V4, j, i.e. for each time series and
frequency of the spectroscopy, and, next, we summarise CP;; over ¢ as follows

L CP;;
CPj:ZTJ. (3)

i=1

In this way, the measures in Eq.s (2) and (3) make it possible to assess the time

of the regime switch for each level j. It is worth noticing that Eq. (2) becomes

the following: CP;; = argmin {1(y;;+ < 4;)} when the first regime in the time
te{l,...,T}

series is the upper regime.

4 Empirical Analysis

Here we present the application of the three-way panel regression model pre-
sented in Sect. 3 on the bioimpedance data described in Sect. 2. We propose
two alternative applications of Eq. (1) to the bioimpedance measurements of
the bananas y;;;: a model with no time-varying regressor and a model with
one time-varying regressor, which is the weight of the fruit, say x;. In both
cases, the minimum allowable number of instrumental variables has been cho-
sen. Hence, the first three lags of the variables considered - i.e., y;;; for the
model without regressors and y;;; and x;; for the model with a time-varying
regressor - have been used as I'Vs {zijt}tT: +,» and observations at ¢ = 1,2,3 have
been excluded from the identification of the thresholds.

The FD-GMM estimates of the threshold parameters and of the difference
between the slope parameters are shown in Fig. 3. Coherently with the spec-
troscopy, 9; decreases as j increases. Overall, the two models led to similar
estimated threshold values (Fig. 3, left). However, based on the Gaussian z-
test, the estimated coefficients of the model including the weight of the bananas
x; are not significant. We have 107 p-values for FM ranging from 0.45 to 0.96
and 103 for TA ranging from 0.60 to 0.97, and higher p-values are associated
with lower frequencies. This result is reflected in the corresponding estimated
values of & 17, which do not exhibit a clear pattern (Fig. 3, middle). In contrast,
a more regular pattern can be observed for models without time-varying regres-
sors. We thus conclude that the weight of the fruit is not a good explanatory
variable for bioimpedance.

As far as the comparison of the two devices is concerned, the estimates
overall appear very similar (Fig. 3, left). However, some dissimilarities emerge
between the estimated 4; of the two devices. The estimated threshold curves of
the TA and the FM coincide for js up to approximately 4500 Hz, when the FM’s
curves abruptly increase. From that point on, the difference between the IA
and the FM progressively reduces, but 4; always appears slightly lower for the
IA. This evidence can be traced back to a technical issue that emerged during
the experiment with the FM: minor changes in the placement of the electrodes
may have affected the data collection. Nevertheless, this technical issue does not



impact the reliability of the instrument and does not affect statistical analysis.
Therefore, we decided to keep all the data in order to show the differences
between the TA and the FM more effectively. As discussed in Sect. 2 and shown
in Fig. 2, for a fixed frequency j, the bioimpedance shows approximately the
same trend for all bananas, while the time series tend to flatten out as frequencies
increase. Nevertheless, the method developed always identifies the thresholds.
In this respect, the presence of a threshold effect has been tested by means of
the linearity test implemented in the R package PanelTM and described in Seo
and Shin (2016) using 500 bootstrap replications. For both the analysers and
both the models, estimated p-values are almost always greater than 0.97, and
therefore the test supports the presence of a threshold effect irrespective of
the frequency. When considering the model including z;¢, a different result is
obtained for four frequencies j - namely 4600, 4700, 4800, and 4900 Hz - of
the FM. In such cases, the test does not reject the null hypothesis of linearity.
However, it is worth noticing that this result is found in correspondence to
frequencies j that were affected by the aforementioned technical issue in the
FM experiment.

Finally, we identify the time of regime switches according to the procedure
described in Sect. 3.2. The three-dimensional plots in Fig. 4 show the average
time of regime switch for each j for the two models considered. Greater variabil-
ity can be noted in the identified change points irrespective of the impedance
analyser employed when the model with a time-varying regressor is used. This
finding is in line with the non-significance of the estimated coefficients of the
fruit’s weight. Overall, these results suggest that there is a physio-chemical
change in the bananas observed approximately at day 7 for both the TA and
the FM data. The equivalence between the two devices considered can have im-
portant implications in the fruit harvesting and distribution chain for reasons
directly related to the portability of the FrutiMeter. Having real-time informa-
tion on the state of fruit ripening or spoilage would allow optimisation of the
fruit supply chain starting from the time of fruit picking, which depends on both
the state of fruit ripening and the destination of fruit delivery.

The proposed model was also applied in Di Lascio and Perazzini (2022) to
a panel data of strawberry bioimpedance. In this case, the time series showed
high heterogeneity in terms of bioimpedance regardless of the electrical fre-
quency and the difference over regimes was not evident as in the banana data
set. Nevertheless, the proposed method appeared to successfully identify thresh-
olds and change points by varying the electrical frequencies. In any case, there
is still a need for bioimpedance engineering studies to better understand what
bioimpedance tells us about fruit ripeness, even though a correspondence be-
tween dynamics in the bioimpedance measurements and fruit deterioration is
empirically observed. In this framework, our study could fuel future research
aimed at contributing to the prediction of earlier stages of ripening, poten-
tially facilitating the development of automated mechanisms for processing fruit
within large-scale food distribution systems.
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Figure 3: Logarithm of the estimated parameter (y-axis) considered per elec-
trical frequency j (x-axis). Left: threshold parameters 4;. Middle: constants

parameter ) 1;- Right: weight parameter ) x;- The black line refers to the IA
and the grey line to the FM. The dashed lines report results from the model
without time-varying regressors, and solid lines represent estimates from the
model with a time-varying regressor.

5 Discussion and Conclusion

In this paper, we have presented a three-way dynamic panel regression model
with threshold effect. The third way is conceived as a variable influencing the
identification of the different regimes and their thresholds. Our proposal is also
intended as a change point detection method. We have defined a criterion to
compute change points by varying the level of the third way. The introduced
model is thus able to take into account serial and cross-sectional dependence and
provide information on the time when an abrupt change occurs by varying the
level of the third way. To estimate the proposed model, the well-known GMM
estimation method in the instrumental variables framework has been used. The
model and the change point detection criterion have been successfully applied
to fruit bioimpedance panel data and implemented in the R software package
PanelTM, which has been described in depth in Di Lascio and Perazzini (2025).

Our empirical findings support, on the one hand, the importance of further
investigating the potential of bioimpedance to uncover physio-chemical dynam-
ics in biological tissues and, on the other hand, the use of a portable device as
a viable alternative for high-frequency bioimpedance analysis, which has tradi-
tionally been confined to laboratory environments. The latter result has impor-
tant implications in the field of food engineering. Indeed, portable device for
bioimpedance measurements offers several advantages over traditional bench-
top analysers, such as enabling on-site data collection, requiring less setup time,
and being easier to operate, making them particularly suitable for routine or
large-scale monitoring without the need for specialised personnel.

This work was directly motivated by an application to bioimpedance data
analysis, but it can be useful to all the other data that share some characteristics
with that considered in this work. For example, in climate change studies, the
temporal observation of debris flows, mudflows, and snow avalanches, due to
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gressors. Bottom: model with a time-varying regressor. Left: IA. Right: FM.
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the increasing frequency and intensity of heavy-to-extreme precipitation events,
is crucial for assessing the hydrological response, e.g. land slope. In medical
research, our threshold regression model may be used to study the response of
patients before and after the administration of different levels of a drug for a
given pathology. Other application domains include, for example, economics,
where the identification of a shock that increases/decreases industrial production
while decreasing the unemployment rate or producer prices is crucial to an
industry’s policy.

Finally, the introduced model can be thought of as a starting point when
building new threshold regression models for multi-way data. Therefore, there
are several possible future research directions. First of all, there are contexts
in which the assumption of independence between the levels of the third way
is unrealistic, even though this assumption allows model estimation to be im-
plemented in parallel, thus reducing its computational burden. Relaxing this
assumption is a great challenge that requires the minimisation of the GMM ob-
jective function J(@), which is not block diagonal and should be minimised for
all the J levels at the same time. Moreover, the consistency and efficiency of es-
timators for the J threshold parameters would also need to be proved. Another
aspect that could deserve attention concerns the criterion to compute change
points. An investigation of the statistical properties of the introduced measure
or an alternative way to compute change points, especially when the time se-
ries dynamics are very complex, could be useful. In addition, an interesting
extension of the model proposed would be to have parameters not homogeneous
over ¢ for applications where statistical units cannot be modelled through the
same coefficients. Finally, a general extension of our proposal would consist of
introducing multiple regimes, thresholds, and change points.
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