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Abstract

Bioimpedance refers to the measurement of the electrical impedance of biological tissue and it can be
used to monitor its physio-chemical changes with important implications in a wide range of applications,
including bioengineering and medical diagnostics. Recently bioimpedance analysis is gaining popularity
in the food industry due to its ability to provide accurate and timely information about food quality,
thereby reducing waste and improving product quality.

Motivated by an original experiment on fruit bioimpedance, we develop a three-way panel dynamic
threshold model and propose it as a method to detect the change point, i.e. fruit ripening time. We
develop an estimation method based on the generalized method of moments and the instrumental vari-
ables estimator, and define a criterion to compute the change point. The performance of the proposed
model is investigated through an extensive Monte Carlo simulation study in terms of the accuracy of both
coefficients’ and thresholds’ estimates and the change point detected. The developed method is applied
to an innovative fruit bioimpedance panel data set from two different electrical impedance analyzers,
a bench-top device and a portable device. The method provides significant threshold and meaningful
ripeness times. The new model is implemented and available through the R package PanelTM.
Keywords: Bioimpedance, Change point detection, FD-IV-GMM, Three-way dynamic panel model,
Threshold model
JEL Code: C13, C18, C23, L66

1 Introduction

Food quality control is extremely important to ensure food safety, reduce waste, and improve product quality.
Sensory evaluation of food quality is nowadays essential in the food industry to constantly monitor physio-
chemical changes of the biological tissue that can be crucial to ensure the quality of the final product (see,
e.g., Tománek et al., 2010; Ibba, 2021; Casa et al., 2022).

In recent years, bioimpedance is gaining popularity in the context of food quality and fruit ripening
due to its ability to provide accurate and timely information about food quality (Pliquett, 2010). Indeed,
bioimpedance refers to the measurement of the electrical impedance of biological tissue, that is a physical
quantity describing the ability of the tissue to oppose an external flow of electrical current (Grimnes and
Martinsen, 2015). The measurement technique involves applying a small electrical current to biological tissue
or material and measuring the resulting electrical response. Since the electrical properties of the fruit or
other food products can be correlated with specific quality attributes (see, e.g., El Khaled et al., 2017), e.g.
fruit ripening, the analysis of the electrical signals are useful to provide information about the properties of
the analysed tissue. Bioimpedance measurements can be performed over a range of frequencies, known as
electrical impedance spectroscopy (EIS) (Grossi and Riccò, 2017). In the context of fruit quality assessment,
EIS is an emerging technique for fruit quality assessment at different frequencies, as it can be used to monitor
changes in the electrical properties of fruit tissues and, in turn, in their physio-chemical properties, in a non-
destructive and non-invasive way due to the fact that different electrical frequencies cross cell membranes
differently (Ibba et al., 2020). Thus EIS has the potential to play an important role in the food industry in
the future since it can be used for quality control of fruit during storage, transportation, and processing.
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Figure 1: Bioimpedance spectra for a subset of the analysed bananas sample, a fixed instant time (t = 7),
and the IA (left); bioimpedance spectra (averaged over time and bananas) for the considered EIS device, i.e.
IA (dashed line) and FM (solid line) (middle); bioimpedance time series (averaged on bananas) for a small
subset of the possible frequencies for the considered EIS, i.e. IA (black lines) and FM (pink lines) (right).

In this paper we focus on multi-frequency EIS devices that measure the impedance of the system over
time, that is, apply a range of frequencies to the tissue and measure the voltage response over time. In
this way, time-domain EIS makes it possible to provide also insights into dynamic changes in the electrical
properties of fruit. In particular, we consider two EIS devices, a bench-top impedance analyzer (IA) and
a portable EIS system, called “FruitMeter” (FM) (see Sect. 2 for details). The two devices are used to
study fruit samples with the aim of characterizing the physiological state of fruit, e.g. the ripeness state.
From a statistical point of view, time-domain multi-frequency EIS data introduce some challenges that have
to be carefully addressed. The most important are concerned with the data complexity structure since
bioimpedance data present both serial and cross-sectional dependence, and are observed hundreds of times
according to the range of frequencies applied. Fig. 1 graphically illustrates some bioimpedance spectra
recorded for a sample of bananas, for the two different impedance analyzers, and over time. It is evident
that the variability among fruits, the type of bioimpedance analyzer, and the temporal dynamics of the
measurements done have an effect on bioimpedance. Hence the development of a three-way dynamic panel
regression model able to keep into account the two types of dependence and the three-way data structure
appears to be necessary. It is advantageous to have a dynamic model that is not only more flexible, but
it also allows us to exploit the historical dynamics information by introducing lagged dependent variables
among the regressors. Since one of the main purposes of fruit bioimpedance analysis is to assess the ripening
time, another challenge concerns the development of a method to detect a possible point of change in the
bioimpedance time series by exploiting thresholds varying across time series. The change point can be
interpreted as the ripening time of fruit and, thus, it results in crucial information for the usefulness of the
bioimpedance data analysis. This implies that the three-way dynamic panel regression model to develop
should be a threshold regression model with a criterion for change point detection. Our proposal embraces,
on the one side, panel regression models and, on the other side, change point detection methods. The
reference literature is very extensive but, to the best of our knowledge, there is still a gap for change point
detection in three-way panel data with temporal dynamics and thresholds varying across time series. From
self-exciting threshold autoregressive models (Tong, 1990; Hansen, 2000) to the more recent dynamic panel
model with threshold effect and endogeneity developed by Seo and Shin (2016), from which we were inspired,
there are no panel models that work with three-way data and define threshold parameters that are not in
common to all time series, although there are a variety of multi-dimensional panel models (see, e.g., Mátyás,
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1997, Mátyás, 2017, Balazsi et al., 2018, and references therein). As for change point detection methods for
panel data, the attempts to extend the seminal work by Bai (2010) defining a panel model with structural
breaks resulted in models computationally unfeasible, see e.g. Li et al. (2015). Many contributions with
different approaches have been developed (see, e.g., Chen and Huang, 2017 and Maciak et al., 2020), but
each requires the introduction of restrictions to deal with the high number of parameters involved. In order
to simplify the framework of the analysis, alternative approaches have tried to collapse the panel change
point detection into a better-known time series problem (see, e.g., Horvàth and Huškovà, 2012, Chan et al.,
2013, Cho, 2016), or to analyse each series of the panel separately (see, e.g., Bardwell et al., 2016). Anyway,
all these methods might fail to capture change points that affect only a subset of the series in the panel.
To sum up, existing methods for change-point detection are not suitable for three-way structured data and
have never been applied to bioimpedance data.

To overcome the mentioned limitations of the models available in the literature, we develop a three-way
panel regression model with time-varying (exogenous and/or endogenous) regressors that makes it possible
to have the lagged dependent variable as transition variable and to vary the threshold parameter by the value
of the third way. We also provide a measure to identify a change point in the estimated temporal dynamics.
Hence we first develop a general three-way dynamic panel threshold model for change point detection that
can be used in any context where the interest focuses on multi-way data and the assessment of two different
regimes. Second, we analyse an innovative dataset concerning fruit bioimpedance curves over a range of
frequencies. Here the purpose is twofold: we detect the ripening time and assess the possible effect of the
frequency on the fruit bioimpedance; next, we compare the results obtained from two different EIS devices
with the aim of providing insights on the quality of the more user-friendly and possibly low-cost portable
EIS tool.

The paper is organized as follows. In Section 2 we describe the bioimpedance data which motivates our
proposal. In Section 3 we present the developed three-way dynamic panel threshold model and propose a
criterion to detect a change point. Moreover, we develop the generalized method of moments estimator in
the instrumental variables framework including, in the appendix, the related asymptotic theory and a linear
test for the threshold effect. Finite sample performance of the proposed model and its GMM estimator
is examined in Section 5 where they are empirically investigated through Monte Carlo simulations. The
usefulness of our proposal for real data analysis concerning bioimpedance is shown in Section 6. Discussion
and conclusion are presented in Section 7.

2 Bioimpedance data

The innovative data we consider in this study consists of a collection of bioimpedance measurements of a pro-
duction batch of 150 bananas observed for 11 days. The experiment has been conducted by the Sensing Tech-
nologies Laboratory at the Free University of Bozen-Bolzano in the context of an interdisciplinary research
project between the Faculty of Economics and Management and the Faculty of Engineering. Bioimpedance
is typically measured by using a bioimpedance analyzer, an instrument specifically designed for this purpose.
In the experiment on fruit ripening, two bioimpedance analyzers have been used: a bench-top EIS device
called “impedance analyzer” (IA) that is a marketed equipment, and an innovative portable custom-made
device called “FruitMeter” (FM) (Ibba et al., 2021). Bench-top EIS devices are typically unwieldy and more
powerful than a portable EIS device and, therefore, are generally more expensive and require more main-
tenance and expertise to operate. On the contrary, portable EIS devices are small, lightweight instruments
that can be easily transported and easily used in a wide range of situations and applications. With both the
analyzers, bioimpedance measurements have been performed over a range of frequencies using two electrodes
placed on the surface of each fruit being measured (Ibba et al., 2020). A small alternating current is applied
through one electrode and the resulting voltage is measured at the other electrode and then used to calcu-
late the impedance of the material at different frequencies. Since the voltage that generates the flow affects
the measurement of bioimpedance, multiple electrical frequencies should be considered when assessing fruit
quality (Ibba et al., 2020; Ibba, 2021).

Bioimpedance measurements have been provided at 189 frequencies ranging from 20 to 13668764.956
Hz for the IA and at 181 frequencies from 10 to 99000 Hz for the FM. It is to be noted that frequency
values for the IA and FM are similar but do not perfectly coincide. All the fruits were harvested simul-
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Figure 2: Bioimpedance time series of the 150 observed bananas as provided by the FM (left) and the
IA (right) device by varying spectroscope frequency among (10, 1000, 10000, 30000, 99000) Hz for FM and
(20, 1018.568, 10026.058, 29286.314, 13668764.956) Hz for IA (from the lightest to the darkest colour).

taneously and marketed together, thus ensuring the homogeneity of the initial stage of ripening of the
banana batch. The measurements have been performed every day for 11 days, i.e. until the fruit has
visibly deteriorated, to monitor the progress of ripening under controlled room temperature and humid-
ity. In Fig. 2 a preliminary representation of the data is shown for a set of frequencies ranging from the
minimum to the maximum of the devices and considering three intermediate frequencies in common to
the two used analyzers. Specifically, we considered (10, 1000, 10000, 30000, 99000) frequencies for FM and
(20, 1018.568, 10026.058, 29286.314, 13668764.956) frequencies for IA.

Considering that we aim at, not only, investigating the temporal dynamics of fruit bioimpedance by
varying spectroscope frequency, but also comparing the two considered analyzers, frequencies j < 20 and
j > 99000 Hz have been neglected. In addition, as shown in Fig. 2, we observe that bioimpedance time series
tend to flatten at higher frequencies, irrespective of the type of impedance analyzer used. Even though for
very high frequencies there is still variability over time, the behaviour of the bioimpedance measurements
appears to be less informative in terms of the fruit ripening process. For this reason, we restrict the analysis
to the set of frequencies in the interval 20 ≤ j ≤ 30000 Hz. This selection led to 103 frequencies for the
IA and 107 for the FM. In the end, the two post-processing data sets constitute three-way balanced panels
with n = 150 bananas, J = 103 and J = 107 electrical frequencies for the IA and the FM, respectively,
and T = 11 days. Finally, we have additional information regarding fruit weight for each day, which is a
time-varying regressor that can be useful in describing the fruit ripening process.

3 Three-way dynamic panel threshold model

We define a three-way dynamic panel threshold regression model on i = 1, . . . , n statistical units observed
in t = 1, . . . , T instants of time by varying a third-way of j = 1, . . . , J values:

yijt = (1,x′
ijt)ϕ1j1

{
yij(t−1) ≤ γj

}
+ (1,x′

ijt)ϕ2j1
{
yij(t−1) > γj

}
+ εijt (1)

where yijt is the value of the variable Y observed on the i-th statistical unit at time t for the j-th value of the
considered third-way, xijt is a vector of k1 time-varying (exogenous or endogenous) regressors, which may

include lagged dependent variable, ϕ1j =
(
ϕ
(1)
1j , . . . , ϕ

(k1+1)
1j

)
and ϕ2j =

(
ϕ
(1)
2j , . . . , ϕ

(k1+1)
2j

)
are, respectively,

the lower and upper regime intercept and slope parameters vectors of the j-th value, 1 is the indicator
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function that captures the change in regime and is defined by the threshold parameter γj that can vary by j,
the lagged dependent variable yij(t−1) is the endogenous transition variable, and εijt is the error term that
is defined as the sum of three components:

εijt = µi + λj + νijt

where µi is the unobserved individual fixed effect, λj is the unobserved third-way fixed effect, and νijt is a
zero mean random error such that E (νijt|Ft−1) = 0, where Ft is a natural filtration at time t such that νijt
is a martingale difference sequence.

3.1 GMM estimation method for the three-way model

The proposed model in Eq. (1) can be estimated by extending to the three-way model case the generalized
method of moments (GMM) in Seo and Shin (2016), that is based on the first difference transformation (FD)
and the use of instrumental variables (IVs). Inspired by the motivating empirical applications (see Sect. 6),
we assume that the J values of the third way are independent of each others and represent, for instance, the
categories or levels of a variable. This case occurs every time replicated observations on the same statistical
units i at a fixed time t do not have any effect on each other, i.e. are independent.

The FD-IV-GMM estimator for the three-way panel threshold model in Eq. (1) is developed through a
procedure for the following first-differentiated model to deal with the correlation between regressors and the
individual and category fixed effects:

∆yijt = yijt − yij(t−1) = β′
j∆xijt + δ′jX

′
ijt1ijt(γj) + ∆εijt

where ∆ is the first difference operator, βj =
(
ϕ
(2)
1j , . . . , ϕ

(k1+1)
1j

)′
, δj = (ϕ2j − ϕ1j),

Xijt =

( (
1,x′

ijt

)(
1,x′

ij(t−1)

) ) , 1ijt(γj) =

(
1{yij(t) > γj}

−1{yij(t−1) > γj},

)
and ∆εijt = εijt − εij(t−1) = νijt − νij(t−1). Hence, θj = (β′

j , δ
′
j , γj)

′ is the (2k1 + 2)-dimensional vector of
parameters to estimate for each level j, and the whole unknown parameters vector is θ = (θ′

1, . . . ,θ
′
J)

′ and
belongs to a compact set Θ ⊂ RkJ with k = (2k1 + 2).

In light of the independence among levels of the third way, we can estimate the parameters vector for
each level j taken separately, i.e. estimate θj for each j ∈ {1, . . . , J}. Indeed, the GMM objective function
to minimize to find θ is a block diagonal matrix where each block is positive definite and can be minimized
independently from the other blocks. Hence the two-step GMM estimator can be found minimizing a GMM
estimator for each θj , with j = 1, . . . , J as described in the following.

For a chosen j, a two-step procedure is developed. In the first step of the estimation procedure, the
following GMM estimator of βj and δj for a fixed γj is defined through the grid search algorithm by
exploiting l instruments:(

β̂j(γj), δ̂j(γj)
)
=
(
g
(j)
2n (γj)

′W(j)
n g

(j)
2n (γj)

)−1

g
(j)
2n (γj)

′W(j)
n g

(j)
1n (γj)

where g
(j)
1n (γj) =

1
n

∑n
i=1 g

(j)
1i with

g
(j)
1i =

zijt0∆yijt0...
zijT∆yijT ,


g
(j)
2 (γj) =

1
n

∑n
i=1 g

(j)
2i (γj) with

g
(j)
2i (γj) =

zijt0 (∆xijt0 ,1ijt0(γj)
′Xijt0)

...
zijT (∆xijT ,1ijT (γj)

′XijT ) ,
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{zijt}Tt=t0
is the set of l instrumental variables ∀j, and W

(j)
n is a (l × l) weight matrix whose form can be

specified in different ways. Following Seo and Shin (2016), it can be either W
(j)
n = Il or as follows:

W (j)
n =


2
n

∑n
i=1 zijt0z

′
ijt0

− 1
n

∑n
i=1 zijt0z

′
ijt0+1 0 . . .

− 1
n

∑n
i=1 zijt0+1z

′
ijt0

2
n

∑n
i=1 zijt0+1z

′
ijt0+1

. . .
. . .

0
. . .

. . . − 1
n

∑n
i=1 zijT−1z

′
ijT

. . .
. . . − 1

n

∑n
i=1 zijT z

′
ijT−1

2
n

∑n
i=1 zijT z

′
ijT .



−1

.

The GMM estimator of γj is then obtained as follows:

γ̂j = arg min
γj∈Γj

Ĵ(j)
n (γj)

where Ĵ
(j)
n (γj) denotes the objective function evaluated at β̂j(γj) and δ̂j(γj), given by Ĵ

(j)
n (γj) = g(j)

n (γj)
′W

(j)
n g(j)

n (γj),
and the (l × 1) vector of sample moment conditions is defined as follows:

ḡ(j)
n (γj) = ḡ

(j)
1n − ḡ

(j)
2n (γj)

(
β̂j(γj)

′, δ̂j(γj)
′
)′

=
1

n

n∑
i=1

g
(j)
1i − 1

n

n∑
i=1

g
(j)
2i (γj)

(
β̂j(γj)

′, δ̂j(γj)
′
)′
.

The first-step GMM parameters estimates then are (β̂′
j , δ̂

′
j , γ̂j)

′ where (β̂′
j , δ̂

′
j)

′ = (β̂j(γ̂j)
′, δ̂j(γ̂j)

′)′.
The second-step GMM estimators are given by the procedure based on the grid search algorithm described

above updated by exploiting the first-step estimates. Hence, the (final) GMM estimator of θj , which is θ̂j ,
is obtained as follows:

θ̂j = arg min
θj∈Θj

Ĵ(j)
n (θj)

where
Ĵ(j)
n (θj) = g(j)

n (θj)
′W(j)

n g(j)
n (θj) (2)

with W
(j)
n =

(
1
n

∑n
i=1 ĝ

(j)
i (θj)ĝ

(j)′
i (θj)− 1

n2

∑n
i=1 ĝ

(j)
i (θj)

∑n
i=1 ĝ

(j)′
i (θj)

)−1

,

ĝ
(j)
i (θj) =


zijt0

(
∆yijt0 − β̂′

j∆xijt0 − δ̂′jX
′
ijt0

1ijt0(γ̂j)
)

...

zijT

(
∆yijT − β̂′

j∆xijt0 − δ̂′jX
′
ijT1ijT (γ̂j)

)


=
(
∆̂εijtz

′
ijt0 , . . . , ∆̂εijtz

′
ijT

)
,

and ∆̂εijt are the residuals obtained from the first-step estimation. The described estimation procedure is

repeated for each value of j to obtain the FD-IV-GMM estimates θ̂ of all the parameters in the three-way
model in Eq. (1).

As previously mentioned, we assume independence between third-way’s levels and, consequently, the
(lJ × lJ) weight matrix W is a diagonal block matrix whose blocks on the diagonal are given by a (l × l)

weight matrix W
(j)
n concerning the j-th level. Hence, the whole parameters vector θ is estimated by applying

the above described GMM estimator for each θj taken separately, where j = 1, . . . , J . Specifically, the closed-

form solution to produce GMM estimates of the whole parameters vector θ̂ is in the diagonal of the following
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matrix:

Ĵ(θ) =



g(1)
n (θ1)

′ 0 . . . . . . 0
...

. . .
... . . .

...

0 . . . g(j)
n (θj)

′ . . . 0
... . . . . . .

. . .
...

0 . . . . . . 0 g(J)
n (θJ)

′





W
(1)
n 0 . . . . . . 0
...

. . .
... . . .

...

0 . . . W
(j)
n . . . 0

... . . . . . .
. . .

...

0 . . . . . . 0 W
(J)
n




g(1)
n (θ1) 0 . . . . . . 0

...
. . .

... . . .
...

0 . . . g(j)
n (θj) . . .0

... . . . . . .
. . .

...

0 . . . . . . . . .0 g(J)
n (θJ)



=



Ĵ
(1)
n (θ1) 0 . . . . . . 0
...

. . .
... . . .

...

0 . . . Ĵ
(j)
n (θj) . . . 0

... . . . . . .
. . .

...

0 . . . . . . 0 Ĵ
(J)
n (θJ)


(3)

where Ĵ
(j)
n (θj) = g(j)

n (θj)
′W

(j)
n g(j)

n (θj) with j = 1, . . . , J . Hence,

θ̂ =

(
arg min

θ1∈Θ1

Ĵ(1)
n (θ1), . . . , arg min

θj∈Θj

Ĵ(j)
n (θj), . . . , arg min

θJ∈ΘJ

Ĵ(J)
n (θJ)

)
(4)

where Ĵ
(j)
n (θj) is as given in Eq. (2) and subsequent equations.

The asymptotic theory of the estimator in Eq. (4) and the test for threshold effect are developed in
Appendices A and B, respectively.

4 Change point detection

The three-way dynamic panel threshold model in Eq. (1) is also thought to detect change points in panel
data. Once the proposed model is estimated through the method developed in Sect. 3, the final goal is to
compute the change point (CP) in each time series, that is the time at which a regime switch occurs. From
the applied point of view, this concerns testing structural change problems that occur naturally in many
contexts; for example, in fruit ripening control context, where one is faced with the output of a production
line and wants to detect any departure from an acceptable production standard. We propose to compute
the change point as the minimum time at which the regime switch occurs, that is, at which the time series
is greater than the estimated threshold parameter. We thus define the following measure:

ĈPij = argmin
t∈{1,...,T}

{1(yijt > γ̂j)} (5)

that provides the time of the regime change ∀ i, j , i.e. for each time series and frequency of the spectroscopy,
and, next, we summarize ĈPij over i as follows:

ĈPj =

n∑
i=1

ĈPij

n
. (6)

In this way, measures in Eqs. (5) and (6) make it possible to assess the time of the regime switch for each
level j.

It is worth noticing that Eq. (5) becomes the following: ĈPij = argmin
t∈{1,...,T}

{1(yijt < γ̂j)} when the first

regime in the time series is the upper regime.

7



5 Monte Carlo simulation study

We explore finite sample performance of the developed FD-IV-GMM estimator in Eq. (4). To this end, we
perform a Monte Carlo study and investigate the performance of our proposal in terms of bias and mean
squared error of the estimator for β, δI , δX , γ, and CP. The developed FD-IV-GMM estimator, the function
to randomly generate data from the model in Eq. (1) as well as the performance measures used in this section
have been implemented in the R package PanelTM submitted to CRAN.

We consider two different data generating processes (DGPs), one without time-varying regressors (DGP1)
and the other with time-varying regressors (DGP2). We assume that the error term is distributed as a
Gaussian white noise, that is εijt ∼ GWN (0, 1), ∀j = 1, . . . , J . As for the DGP2, we assume the regressor
Xijt is distributed as a stationary autoregressive model, AR(1), with coefficient equal to 0.7. We simulate
different scenarios by varying sample size n in (50, 150) and time series length T in (11, 50), for each level
j. We also vary the time-varying exogenous regressor coefficients and the threshold parameter across j’s
values (see specific parameters values in the scenarios listed below). Moreover, when simulated time series
are short, i.e. T = 11, the true value used for the change point is CPij = 8, while, when T = 50, CPij = 20,
for all i = 1, . . . , n and j = 1, . . . , J . In addition, we also carry out a Monte Carlo study using parameters
values estimated on the real data set analysed in Sect. 6 and choosing J = 7 where each j corresponds to a
different frequency of the FM spectroscopy (see DGP1, scenario 2., in the list below and Tab. 2 to see the
true parameters values used). We thus simulate the following scenarios for the two DGPs:

- DGP1:

1. Eq. (1) with J = 2 and without time-varying regressors:
yi1t = −1

{
yi1(t−1) ≤ 0

}
+ 1

{
yi1(t−1) > 0

}
+ εi1t

yi2t = −0.71
{
yi2(t−1) ≤ 0

}
+ 1.81

{
yi2(t−1) > 0

}
+ εi2t

2. Eq. (1) with J = 7 and each value of j corresponds to a specific frequency of the FM spectroscopy (see
Sect. 2); here the simulated scenario is inspired by the data set analysed in Sect. 6; therefore, we set
n = 150, T = 50, CPij = 8, ∀i, j and use the following subset of frequencies: 20Hz, 500Hz, 2100Hz,
5000Hz, 8000Hz, 18000Hz, 29000Hz; the true values for γj , δIj and CPj (see Tab. 2, column “True
value”) are accordingly selected among those estimated through the developed model (see Sect. 6
for details);

- DGP2:

1. Eq. (1) with J = 2, a time-varying regressor, and γj = 0, ∀j = 1, 2:
yi1t = (−1− 0.2xi1t)1

{
yi1(t−1) ≤ 0

}
+ (1 + 0.2xi1t)1

{
yi1(t−1) > 0

}
+ εi1t

yi2t = (−0.7− 0.5xi2t)1
{
yi1(t−1) ≤ 0

}
+ (1.8 + 0.8xi2t)1

{
yi2(t−1) > 0

}
+ εi2t

2. Eq. (1) with J = 2 and a time-varying regressor, and γ1 ̸= γ2 ̸= 0:
yi1t = (0.5 + 0.8xi1t)1

{
yi1(t−1) ≤ 3

}
+ (5− 0.7xi1t)1

{
yi1(t−1) > 3

}
+ εi1t

yi2t = (5 + 1.2xi2t)1
{
yi1(t−1) ≤ 10

}
+ (11 + 0.3xi2t)1

{
yi2(t−1) > 10

}
+ εi2t

3. Model as in the previous case (DGP2, scenario 2.) but with CPi1 ̸= CPi2, CPi1 = 20, and CPi2 = 30
∀ i; for obvious reasons here we only simulate the case with T = 50.

4. Model as in the DGP2, scenario 2. but with CPi1 ̸= CPi2, CPi1 = 7, and CPi2 = 8 ∀ i; for obvious
reasons here we only simulate the case with T = 11.

To assess the performance of the proposed model and its estimation we perform B = 500 replications
for each considered scenario and compute the relative bias (RB) and the relative mean root squared error
(RRMSE) for each model’s parameter and for the change point. The sample version of RB and RRMSE are
as follows:

R̂B =
1

B

B∑
b=1

(
ψ̂b − ψ

ψ

)
, ̂RRMSE =

√√√√ 1

B

B∑
b=1

(
ψ̂b − ψ

ψ

)2
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where ψ is one of the parameters in the model, i.e. βj , δj , γj , CPj , and ψ̂b is the corresponding estimated
value at the b-th Monte Carlo replication.

Monte Carlo estimations results are shown in Tables from 1 to 6. Note that in order to clearly show the
results of the estimation accuracy of the intercept and all coefficients of the model, we have indicated with
δIj the difference between the lower and upper regime’s intercept at the j-th level of the third way and with
δXj the difference between the lower and upper regime’s slope parameter for the j-th level.

Table 1: Simulation results for DGP1, scenario 1.: model in Eq. (1) with J = 2 and without time-varying
regressors. Note that ∗ indicates that a not relative version of the measure is computed due to null denomi-
nator.

n T j Parameter True value R̂B ̂RRMSE

50 11 1 δI1 2.0 0.209 0.531
50 11 1 γ1 0 -0.234∗ 0.419∗

50 11 1 CP1 8 -0.053 0.098
50 11 2 δI2 2.5 0.098 0.494
50 11 2 γ2 0 -0.184∗ 0.364∗

50 11 2 CP2 8 -0.052 0.099
50 50 1 δI1 2.0 -1.469 1.527
50 50 1 γ1 0 0.236∗ 1.099∗

50 50 1 CP1 20 0.253 0.478
50 50 2 δI2 2.5 -1.580 1.606
50 50 2 γ2 0 0.546∗ 1.320∗

50 50 2 CP2 20 0.229 0.444
150 11 1 δI1 2.0 0.237 0.254
150 11 1 γ1 0 -0.057∗ 0.094∗

150 11 1 CP1 8 -0.012 0.021
150 11 2 δI2 2.5 0.166 0.188
150 11 2 γ2 0 -0.039∗ 0.062∗

150 11 2 CP2 8 -0.012 0.019
150 50 1 δI1 2.0 -0.366 0.419
150 50 1 γ1 0 -0.552∗ 0.738∗

150 50 1 CP1 20 -0.101 0.185
150 50 2 δI2 2.5 -0.496 0.537
150 50 2 γ2 0 -0.428∗ 0.699∗

150 50 2 CP2 20 -0.098 0.205

Regarding DGP1, scenario 1. (simulation results in Tab. 1), it appears that the proposed model is able
to find the true CP irrespective of the sample size and the time series length even though a slight worsening

is present when n = T = 50. As for the estimation accuracy of model coefficients, the R̂B and the ̂RRMSE
of all the estimates show satisfactory values that further improve as n increases and the length of time series
decreases. Also for δIj and γj the worst case is when n = T = 50, probably due to a too long time series
w.r.t. the sample size. However, when n = 150 and T = 50 and very different threshold values as well as
lower and upper regime’ parameters are used to generate panel data by varying the level j (DGP1, scenario
2.), the proposed model shows very satisfactory results both for the estimation accuracy and the change
point detection (see Table 2). Also in the DGP2, scenario 2. (simulation results in Tab. 3) the identified
ĈPs are very close to the true ones. As expected, all the model parameters show the best performance
when the sample size is big (n = 150) and the time series is not short (T = 50). In addition, the positive
effect of increasing the sample size and shorting time series appears to be a bit milder than that observed
in simulations of the DGP1. Finally, βj coefficients are the only ones showing an accuracy that would
deserve further study. However, the overall performance of the proposed model is very satisfactory and
the introduction of a time-varying regressor does not show a negative impact on it. Very similar remarks
can be made for the investigated scenario 2. of the DGP2 whose results are shown in Tab. 4. Finally, in
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Table 2: Simulation results for DGP1, scenario 2.: model in Eq. (1) with J = 7 frequencies of the FM
spectroscopy (for details see the text of the section), and without time-varying regressors.

j Hz Parameter True value R̂B ̂RRMSE

1 20 δI1 12046.52 0.003 0.078
1 20 γ1 17586.24 -0.341 0.341
1 20 CP1 8 -0.001 0.017
2 500 δI2 8900.07 -0.007 0.105
2 500 γ2 14284.21 -0.310 0.310
2 500 CP2 8 -0.002 0.030
3 2100 δI3 4825.16 -0.020 0.124
3 2100 γ3 9457.06 -0.254 0.254
3 2100 CP3 8 -0.004 0.038
4 5000 δI4 3480.00 -0.020 0.080
4 5000 γ4 8061.00 -0.215 0.215
4 5000 CP4 8 0.000 0.000
5 8000 δI5 2460.11 -0.070 0.106
5 8000 γ5 6953.72 -0.176 0.176
5 8000 CP5 8 -0.000 0.000
6 18000 δI6 1396.59 -0.000 0.136
6 18000 γ6 4556.48 -0.152 0.152
6 18000 CP6 8 -0.004 0.019
7 29000 δI7 721.49 -0.059 0.168
7 29000 γ7 3598.10 -0.099 0.099
7 29000 CP7 8 -0.007 0.029

Tables (5) and (6) we present the Monte Carlo results for the two most general cases where γ1 ̸= γ2 ̸= 0
and CPi1 ̸= CPi2 and the model includes a time-varying regressor. These results confirm the satisfactory
performance of the proposed model in terms of both the estimation accuracy and the change point detection.

6 Empirical analysis

We here present the application of the three-way panel regression model developed in Sect. 3 on the fruit
bioimpedance data described in Sect. 2. We propose two alternative applications of Eq. (1) to the bananas’
bioimpedance measurements yijt: a simplified model with no time-varying regressor and a model with one
time-varying regressor, which is the fruit weight, say xit. In both cases, the first three lags of the considered
variables - i.e., yijt for the model without regressors and yijt and xit for the model with a time-varying

regressor - have been chosen as instrumental variables {zijt}Tt=t0
. Therefore, observations at t = 1, 2, 3 have

been excluded from the thresholds’ identification.
The FD-IV-GMM estimates of the threshold parameters and of the difference between the slope param-

eters are shown in Fig. 3. Coherently with the spectroscopy, γ̂j decreases as j increases. Overall, the two
models led to similar estimated threshold values, as shown in Fig. 3, left. However, based on the Gaussian
z-test, the estimated coefficients of the model including the banana’s weight xit are not significant. We have
107 p-values for FM ranging from 0.45 to 0.96 and 103 for IA ranging from 0.60 to 0.97, and higher p-values
are associated with lower frequencies. This result is reflected in the corresponding estimated values of δ̂Ij ,
which do not exhibit a clear pattern (Fig. 3, middle). In contrast, a more regular pattern can be observed
for models without time-varying regressors. We thus conclude that the weight of the fruit is not a good
explanatory variable for bioimpedance.

As far as the comparison of the two instruments is concerned, the estimates overall appear very similar
(Fig. 3, left). However, some dissimilarities emerge between the estimated γ̂j of the two instruments. Indeed,
the estimated threshold curves of the IA and the FM coincide for js up to approximately 4500 Hz, when the
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Table 3: Simulation results for DGP2, scenario 1.: model in Eq. (1) with J = 2, a time-varying regressor,
and γj = 0, ∀j = 1, 2. Note that ∗ indicates that a not relative version of the measure is computed due to
null denominator.

n T j Parameter True value R̂B ̂RRMSE

50 11 1 β1 -0.2 1.151 3.275
50 11 1 δI1 2 -0.236 0.681
50 11 1 δX1 0.4 0.637 2.361
50 11 1 γ1 0 -0.697∗ 0.920∗

50 11 1 CP1 8 -0.147 0.195
50 11 2 β2 -0.5 0.353 1.198
50 11 2 δI2 2.5 -0.129 0.602
50 11 2 δX2 1.3 0.027 0.790
50 11 2 γ2 0 -0.382∗ 0.592∗

50 11 2 CP2 8 -0.077 0.121
50 50 1 β1 -0.2 -0.838 2.714
50 50 1 δI1 2 -1.939 1.980
50 50 1 δX1 0.4 -0.646 1.541
50 50 1 γ1 0 0.588∗ 1.127∗

50 50 1 CP1 20 0.371 0.507
50 50 2 β2 -0.5 1.317 3.511
50 50 2 δI2 2.5 -1.990 2.197
50 50 2 δX2 1.3 0.499 1.383
50 50 2 γ2 0 -0.080∗ 1.238∗

50 50 2 CP2 20 0.025 0.295
150 11 1 β1 -0.2 -0.489 0.847
150 11 1 δI1 2 0.349 0.522
150 11 1 δX1 0.4 -0.369 0.776
150 11 1 γ1 0 -0.361∗ 0.525∗

150 11 1 CP1 8 -0.078 0.115
150 11 2 β2 -0.5 -0.165 0.308
150 11 2 δI2 2.5 0.127 0.210
150 11 2 δX2 1.3 -0.197 0.303
150 11 2 γ2 0 -0.154∗ 0.241∗

150 11 2 CP2 8 -0.031 0.049
150 50 1 β1 -0.2 -0.221 1.512
150 50 1 δI1 2 -0.828 0.930
150 50 1 δX1 0.4 -0.197 0.839
150 50 1 γ1 0 0.007∗ 0.812∗

150 50 1 CP1 20 0.082 0.31
150 50 2 β2 -0.5 1.061 1.507
150 50 2 δI2 2.5 -0.653 0.727
150 50 2 δX2 1.3 0.377 0.565
150 50 2 γ2 0 -0.18∗ 0.461∗

150 50 2 CP2 20 -0.022 0.112

FM’s curves abruptly increase. From that point on, the difference between the IA and the FM progressively
reduces, but γ̂j always appears slightly lower for the IA. This evidence can be traced back to a technical issue
that emerged during the experiment with the FM. Indeed, minor changes in the placement of the electrodes
may have affected the data collection. Nevertheless, this technical issue does not compromise the reliability
of the instrument and does not affect statistical analysis. Therefore, we decided to keep the whole data in
order to better show the differences between the IA and the FM.
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Table 4: Simulation results for DGP2, scenario 2.: model in Eq. (1) with J = 2, a time-varying regressor,
γ1 ̸= γ2 ̸= 0, and CPi1 = 20, and CPi2 = 30, ∀ i.

n T j Parameter True value R̂B ̂RRMSE

50 11 1 β1 0.8 0.492 1.199
50 11 1 δI1 4.5 -0.480 0.616
50 11 1 δX1 -1.5 0.386 0.945
50 11 1 γ1 3 -0.399 0.505
50 11 1 CP1 8 -0.095 0.137
50 11 2 β2 1.2 0.157 1.155
50 11 2 δI2 6 -0.452 0.611
50 11 2 δX2 -0.9 0.015 2.243
50 11 2 γ2 10 -0.293 0.341
50 11 2 CP2 8 -0.124 0.172
50 50 1 β1 0.8 -0.685 1.338
50 50 1 δI1 4.5 -1.672 1.704
50 50 1 δX1 -1.5 -0.476 0.835
50 50 1 γ1 3 0.141 0.690
50 50 1 CP1 20 0.240 0.426
50 50 2 β2 1.2 -0.532 0.692
50 50 2 δI2 6 -1.325 1.340
50 50 2 δX2 -0.9 -0.687 0.948
50 50 2 γ2 10 0.013 0.207
50 50 2 CP2 20 0.396 0.517
150 11 1 β1 0.8 -0.116 0.248
150 11 1 δI1 4.5 -0.084 0.123
150 11 1 δX1 -1.5 -0.048 0.295
150 11 1 γ1 3 -0.153 0.211
150 11 1 CP1 8 -0.026 0.042
150 11 2 β2 1.2 0.081 0.228
150 11 2 δI2 6 -0.059 0.089
150 11 2 δX2 -0.9 0.046 0.633
150 11 2 γ2 10 -0.137 0.166
150 11 2 CP2 8 -0.029 0.044
150 50 1 β1 0.8 0.084 0.541
150 50 1 δI1 4.5 -0.747 0.777
150 50 1 δX1 -1.5 0.011 0.301
150 50 1 γ1 3 -0.255 0.394
150 50 1 CP1 20 -0.044 0.121
150 50 2 β2 1.2 -0.275 0.416
150 50 2 δI2 6 -1.164 1.172
150 50 2 δX2 -0.9 -0.392 0.610
150 50 2 γ2 10 -0.065 0.241
150 50 2 CP2 20 0.267 0.447

As discussed in Section 2 and shown in Fig. 2, for a fixed frequency j, the bioimpedance shows approx-
imately the same trend for all bananas while the time series tend to flatten out as frequencies increase.
Nevertheless, the developed method always identifies the thresholds. In this respect, the presence of a
threshold effect has been tested by means of the linearity test described in Appendix B using 500 bootstrap
replications. For both the analyzers and both the models, estimated p-values are almost always greater
than 0.97, and therefore the test supports the presence of a threshold effect irrespective of the frequency.
When considering the model including xit, a different result is obtained for four frequencies j - namely
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Table 5: Simulation results for DGP2, scenario 3.: model in Eq. (1) with J = 2, a time-varying regressor,
γ1 ̸= γ2 ̸= 0, and CPi1 = 7 and CPi2 = 8, ∀ i.

n T j Parameter True value R̂B ̂RRMSE

50 50 1 β1 0.8 -0.746 1.272
50 50 1 δI1 4.5 -1.688 1.712
50 50 1 δX1 -1.5 -0.473 0.787
50 50 1 γ1 3 0.194 0.669
50 50 1 CP1 20 0.269 0.438
50 50 2 β2 1.2 -0.328 0.535
50 50 2 δI2 6 -1.409 1.424
50 50 2 δX2 -0.9 -0.532 0.889
50 50 2 γ2 10 -0.151 0.282
50 50 2 CP2 30 0.005 0.196
150 50 1 β1 0.8 -0.211 0.314
150 50 1 δI1 4.5 -0.057 0.104
150 50 1 δX1 -1.5 -0.179 0.287
150 50 1 γ1 3 -0.088 0.246
150 50 1 CP1 20 -0.656 0.656
150 50 2 β2 1.2 0.104 0.226
150 50 2 δI2 6 -0.064 0.093
150 50 2 δX2 -0.9 0.065 0.565
150 50 2 γ2 10 -0.132 0.159
150 50 2 CP2 30 -0.740 0.740

Table 6: Simulation results for DGP2, scenario 4.: model in Eq. (1) with J = 2 and a time-varying regressor,
γ1 ̸= γ2 ̸= 0, CPi1 = 20, CPi2 = 30, ∀ i.

n T j Parameter True value R̂B ̂RRMSE

50 11 1 β1 0.8 0.574 1.483
50 11 1 δI1 4.5 -0.478 0.666
50 11 1 δX1 -1.5 0.327 1.034
50 11 1 γ1 3 -0.267 0.571
50 11 1 CP1 7 -0.075 0.134
50 11 2 β2 1.2 0.154 1.115
50 11 2 δI2 6 -0.424 0.587
50 11 2 δX2 -0.9 0.027 2.291
50 11 2 γ2 10 -0.278 0.328
50 11 2 CP2 8 -0.114 0.165
150 11 1 β1 0.8 -0.211 0.314
150 11 1 δI1 4.5 -0.057 0.104
150 11 1 δX1 -1.5 -0.179 0.287
150 11 1 γ1 3 -0.088 0.246
150 11 1 CP1 7 -0.018 0.042
150 11 2 β2 1.2 0.104 0.226
150 11 2 δI2 6 -0.064 0.093
150 11 2 δX2 -0.9 0.065 0.565
150 11 2 γ2 10 -0.132 0.159
150 11 2 CP2 8 -0.026 0.037
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4600, 4700, 4800, and 4900 Hz - of the FM. In such cases, the test does not reject the null hypothesis of
linearity. However, it is worth noticing that this result is found in correspondence to frequencies j that were
affected by the aforementioned technical issue in the FM experiment. Finally, we identify the time of regime

5000

10000

15000

0 10000 20000 30000

0

5000

10000

15000

0 10000 20000 30000

−75

−50

−25

0 10000 20000 30000

Figure 3: Logarithm of the considered estimated parameter (y-axis) per electrical frequency j (x-axis). Left:

threshold parameters γ̂j . Middle: constants parameter δ̂Ij . Right: weight’s parameter δ̂Xj . The black
line refers to the IA and the grey line to the FM. The dashed lines report results from the model without
time-varying regressors, and solid lines represent estimates from the model with a time-varying regressor.

switches according to the procedure described in Sect. 4. We first need to understand in what order the
two regimes occur, whether upper first or lower first. Thus we compare the first observation - yijt at t = 4
- with the corresponding estimated value γ̂j . If the observed value is lower (greater) than the estimated
threshold parameter, t = 4 belongs to the lower (upper) regime, and the change point is identified as the
time t after which the longest sequence of days in the upper (lower) regime is observed. We then identify the
change point for each banana i and frequency j, and then the average change point per each j as described
in Sec. 4. The three-dimensional plots in Fig. 4 show the average time of regime switch for each j for the
two considered models. It can be noticed a greater variability in the identified change points irrespective of
the employed impedance analyzer when the model with a time-varying regressor is used. This finding is in
line with the non-significance of the estimated coefficients of the fruit’s weight. Overall, these results suggest
that there is a physio-chemical change in the observed bananas approximately at day 7 for both the IA and
the FM data.

7 Discussion and conclusion

In this paper, we have presented a three-way dynamic panel regression model with threshold effect. The
third way is thought as a variable influencing the identification of the different regimes and their thresholds.
Our proposal is thought also as a change point detection method. We have, indeed, defined a criterion
to compute change points by varying the third way’s level. To estimate the proposed model, the GMM
estimation method in the instrumental variables framework has been implemented. Our model is, thus,
able to take into account serial and cross-sectional dependence and provide information on the time when
an abrupt change occurs by varying the level of a variable considered influential, in our case the frequency
of the EIS. The model has been also empirically investigated through Monte Carlo simulations and the
obtained results showed satisfactory performance in terms of both estimation accuracy and change point
detected. From an applied viewpoint, the estimated model and the identified change point can be exploited
to gain knowledge about the phenomenon under study. Moreover, the model and the change point detection
criterion have been implemented in the R software package PanelTM.

Our proposal was directly motivated by an application to bioimpedance data analysis and showed good
performances on three-way data concerning fruit bioimpedance experiment, both in terms of change times
detected and interpretability of the results. From a statistical perspective, the bioimpedance data under
investigation present some challenges as they are high-dimensional with a peculiar dependence structure
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Figure 4: Average bananas bioimpedance (y-axis) per frequency j (z-axis) (grey lines) observed over time

t = 1, . . . , 11 (x-axis) and change points ĈPj (green dots). The red line separates the observations used
as instrumental variables from those used in the threshold estimation. Top: model without time-varying
regressors. Bottom: model with a time-varying regressor. Left: IA. Right: FM.
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over time and have possible change points. The model we introduced has been proven particularly useful
in the given context since it has provided a meaningful characterization of the time series regimes. From a
practical point of view, this allowed to gain relevant knowledge that in the future can be used to monitor the
ripening process, help assess fruit ripeness, and determine the optimal harvest time, including preventing
spoilage. Moreover, by comparing the results for two different impedance analyzers, it provided interesting
insights about the performance of the portable EIS device, which is small, lightweight, easy to be transported
and used in a wide range of situations and applications.

In principle, the proposed methodology can be useful to many other data sharing some characteristics
with the bioimpedance data considered in this work. For example, in climate change studies, the temporal
observation of debris flows, mudflows and snow avalanches, due to increasing frequency and intensity of
heavy-to-extreme precipitation events, is crucial for assessing the hydrological response, e.g. land slope. In
medical research, our threshold regression model may be used to study the response of patients before and
after the administration of different levels of a drug for a given pathology. Other applications domains include,
for example, economics, where the identification of a shock that increases/decreases industrial production
while decreasing the unemployment rate or producer prices is crucial to an industry’s policy.

The proposed model can be thought of as a starting point when building new threshold regression models
for multi-way data. Therefore, there are several possible future research directions for our work. An inter-
esting extension consists in the exploration of models with multiple regimes, thresholds and, consequently,
change points to be detected. This would require complicating the model by including a generic number of
regimes and building change point detection tools aiming to identify multiple regime switches based on the
temporal dynamics of the observed features. Another aspect worth examining is related to the assumption
of independence between the levels of the third-way. Although this assumption allows model estimation to
be implemented in parallel, thus reducing its computational burden, there are situations in which it is unre-
alistic. Relaxing this assumption is a great challenge that requires the minimization of the GMM objective
function Ĵ(θ), which is not block diagonal as in Eq. (3) and should be minimized for all the J levels at
the same time. In addition, the consistency and efficiency estimates of the J threshold parameters would
also need to be proved. Finally, another possible research direction is concerned with the way the change
point computation is thought of. The measures defined in Sect. 4 have been introduced as criteria to com-
pute the change point on the basis of the estimated thresholds. The similar time series trends of the fruit
bioimpedance analysed in the current work led to calculate a single change point for all the considered fruits.
In other applied situations, this may not be correct because it would lose potentially valuable information
about the cross-sectional variability of times at which a regime change occurs in the phenomenon under
investigation. The matter here is to study a criterion more appropriate for cases where the time series in the
panel show different trends.

A Asymptotic theory

This section presents the asymptotic theory for the FD-IV-GMM estimator of the proposed model in Eq. (1).
It is well-known that the asymptotic theory of the GMM estimator based on the first-difference transfor-

mation has been already developed by Hansen (2000). In addition, the case of exogenous threshold variable
has been largely investigated in the literature for static panel data models (Hansen, 1999), but there is also a
huge literature on GMM estimation of linear dynamic panels (see, e.g., Arellano and Bond (1991); Blundell
and Bond (1998); Hsiao and Zhang (2015)). Moreover, Seo and Shin (2016) developed the asymptotic
theory for a dynamic panel threshold model, including consistent and efficient estimation of the threshold
parameter, and provided the inference for threshold effects and endogeneity of the transition variable.

Focusing on the FD-IV-GMM estimator for a model where the threshold variable is endogenous, the
theory in Seo and Shin (2016) is the starting point for the asymptotic theory of the proposed model. Since
Eq. (1) assumes independence between the third-way levels, we estimate the model’s parameters for each
third-way’s level j taken separately and, for each j, the standard GMM asymptotics as well as the FD-
IV-GMM asymptotics are still valid. Thus the standard GMM asymptotics and the further development
in Seo and Shin (2016) are also valid for the model in Eq. (1). Hence we can state that, for each j, (i) the
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FD-IV-GMM estimator always follows a normal distribution asymptotically:√
n

(
β̂j − βjn

δ̂j − δj0

)
n1/2−α(γ̂j − γj0)

 d−−−−→
n→∞

N
(
0, (G′

jΩ
−1
j Gj)

−1
)

where the true value of βj is fixed at βj0 while that of δj depends on n such that δjn = δj0n
−α for some

0 ≤ α < 1/2 and δj0 ̸= 0, Ωj is finite and positive definite, Gj = (Gβj ,Gδj (γj0),Gγj (γj0)) is of full rank
and it is composed by:

Gβj =

−E(zijt0∆x′
ijt0

)
...

−E(zijT∆x′
ijT )

 , Gδj (γj) =

−E(zijt01ijt0(γj)
′xijt0)

...
−E(zijT1ijT (γj)

′xijT )

 ,
and

Gγj (γj) =

{Et0−1[zijt0(1ijt0−1,x
′
ij(t0−1))|γj ]pt0−1(γj)− Et0 [zijt0(1ijt0 ,x

′
ij(t0)

)|γj ]pt0(γj)}δ0j
...

{ET−1[zijT (1ijT−1,x
′
ij(T−1))|γj ]pT−1(γj)− ET [zijT (1ijT ,x

′
ijT )|γj ]pT (γj)}δ0j

 ,
where Et[·|γj ] denotes the conditional expectation given yij(t−1) = γj and pt(·) the density of yij(t−1) assumed

continuous and bounded, and Ωj can be obtained as W
(j)−1
n .

B Testing for threshold effect

An important issue related to the three-way panel threshold model in Eq. (1) is to test whether there is a
statistically significant change point in a sequence of chronologically ordered data. We here provide a testing
procedure for the presence of the threshold effect based on a bootstrap algorithm and inspired by the work
of Seo et al. (2019). For each j, we want to test the following hypothesis system:{

H0 : δj0 = 0, for any γj ∈ Γj

H1 : δj0 ̸= 0, for some γj ∈ Γj

where Γj is the parametric space for γj . Using the standard approach based on the supremum statistics:

supWj = sup
γj∈Γj

Wn(γj)

where Wn(γj) = nδ̂j(γj)
′Σ̂δj

(γj)
−1δ̂j(γj) is the standard Wald statistic for each fixed γj ,

Σ̂δj
(γj) = R

((
Ω̂j(θ̂j(γj))

−1/2(Ĝβj
, Ĝδj

(θ̂j(γj)))
)′ (

Ω̂j(θ̂j(γj))
−1/2(Ĝβj

, Ĝδj
(θ̂j(γj)))

))−1

R′

that is a consistent asymptotic variance estimator with R = (0(k1+1)k1
, Ik1+1).

To compute the statistic test, a bootstrap procedure is used. The main idea is that, the residuals

∆̂εijt from the original samples are used to compute ∆y⋆ijt = ∆̂ϵijtηi where ηi, with i = 1, . . . , n, are i.i.d.

observations from the standard normal; next, δ̂j(γj)
⋆ and a bootstrap statistics W⋆

n(γj) are computed to get
supW ⋆

j . The empirical p-values of the test are computed as the proportion of suprema supW ⋆
j (over Γj) in

the bootstrap replications that are bigger than supWj . This test has been implemented in the R software
package PanelTM.
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El Khaled, D., Castellano, N., Gazquez, J., Garćıa Salvador, R., and Manzano-Agugliaro, F. (2017). Cleaner quality control
system using bioimpedance methods: a review for fruits and vegetables. Journal of Cleaner Production, 140:1749–1762.

Grimnes, S. and Martinsen, O. (2015). Bioimpedance and Bioelectricity Basics, volume Biomedical Engineering. Academic,
London, U.K.
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